Complex I superoxide anion production is necessary and sufficient for complex I inhibitor-induced dopaminergic neurodegeneration in Caenorhabditis elegans

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Katherine S. Morton, Alex J. George, Joel N. Meyer
{"title":"Complex I superoxide anion production is necessary and sufficient for complex I inhibitor-induced dopaminergic neurodegeneration in Caenorhabditis elegans","authors":"Katherine S. Morton,&nbsp;Alex J. George,&nbsp;Joel N. Meyer","doi":"10.1016/j.redox.2025.103538","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson's Disease (PD) is the 2<sup>nd</sup> most prevalent neurodegenerative disease, but there is currently no cure and limited understanding of the pathogenesis resulting in dopaminergic neurodegeneration. Inhibitors of electron transport chain Complex I (CI) have long been associated with and are now used to model PD, but CI inhibition results in multiple effects including ATP depletion and reactive oxygen species (ROS) generation. The lack of tools to isolate effects of CI inhibition have rendered it difficult to determine which mechanistic step is critical for CI inhibitor-induced dopaminergic neurodegeneration. Here we report that CI-derived superoxide anion, not ATP depletion, is the critical driver of CI inhibitor-induced dopaminergic neurodegeneration in the model organism <em>Caenorhabditis elegans</em>. We first use SuperNova, a light-activated ROS-generating protein, fused to CI to demonstrate that in absence of enzymatic inhibition CI-localized ROS production is sufficient to drive morphological damage and loss of function of the dopaminergic neurons. Second, we prevented superoxide anion production during exposure to the CI inhibitors rotenone and pyridaben and report a full rescue of CI inhibitor-induced degeneration and functional loss, without rescue of inhibitor-induced ATP depletion. We highlight the importance of mitochondrial superoxide anion generation in the pathogenesis of PD and build a foundation for further definition of the pathways activated by mitochondrial ROS that led to neuronal dysfunction and death. Identification of these underlying mechanisms allows for future prevention of toxicant exposure-induced PD based on mechanistic knowledge.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"81 ","pages":"Article 103538"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725000515","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's Disease (PD) is the 2nd most prevalent neurodegenerative disease, but there is currently no cure and limited understanding of the pathogenesis resulting in dopaminergic neurodegeneration. Inhibitors of electron transport chain Complex I (CI) have long been associated with and are now used to model PD, but CI inhibition results in multiple effects including ATP depletion and reactive oxygen species (ROS) generation. The lack of tools to isolate effects of CI inhibition have rendered it difficult to determine which mechanistic step is critical for CI inhibitor-induced dopaminergic neurodegeneration. Here we report that CI-derived superoxide anion, not ATP depletion, is the critical driver of CI inhibitor-induced dopaminergic neurodegeneration in the model organism Caenorhabditis elegans. We first use SuperNova, a light-activated ROS-generating protein, fused to CI to demonstrate that in absence of enzymatic inhibition CI-localized ROS production is sufficient to drive morphological damage and loss of function of the dopaminergic neurons. Second, we prevented superoxide anion production during exposure to the CI inhibitors rotenone and pyridaben and report a full rescue of CI inhibitor-induced degeneration and functional loss, without rescue of inhibitor-induced ATP depletion. We highlight the importance of mitochondrial superoxide anion generation in the pathogenesis of PD and build a foundation for further definition of the pathways activated by mitochondrial ROS that led to neuronal dysfunction and death. Identification of these underlying mechanisms allows for future prevention of toxicant exposure-induced PD based on mechanistic knowledge.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信