Complex I superoxide anion production is necessary and sufficient for complex I inhibitor-induced dopaminergic neurodegeneration in Caenorhabditis elegans
Katherine S. Morton, Alex J. George, Joel N. Meyer
{"title":"Complex I superoxide anion production is necessary and sufficient for complex I inhibitor-induced dopaminergic neurodegeneration in Caenorhabditis elegans","authors":"Katherine S. Morton, Alex J. George, Joel N. Meyer","doi":"10.1016/j.redox.2025.103538","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson's Disease (PD) is the 2<sup>nd</sup> most prevalent neurodegenerative disease, but there is currently no cure and limited understanding of the pathogenesis resulting in dopaminergic neurodegeneration. Inhibitors of electron transport chain Complex I (CI) have long been associated with and are now used to model PD, but CI inhibition results in multiple effects including ATP depletion and reactive oxygen species (ROS) generation. The lack of tools to isolate effects of CI inhibition have rendered it difficult to determine which mechanistic step is critical for CI inhibitor-induced dopaminergic neurodegeneration. Here we report that CI-derived superoxide anion, not ATP depletion, is the critical driver of CI inhibitor-induced dopaminergic neurodegeneration in the model organism <em>Caenorhabditis elegans</em>. We first use SuperNova, a light-activated ROS-generating protein, fused to CI to demonstrate that in absence of enzymatic inhibition CI-localized ROS production is sufficient to drive morphological damage and loss of function of the dopaminergic neurons. Second, we prevented superoxide anion production during exposure to the CI inhibitors rotenone and pyridaben and report a full rescue of CI inhibitor-induced degeneration and functional loss, without rescue of inhibitor-induced ATP depletion. We highlight the importance of mitochondrial superoxide anion generation in the pathogenesis of PD and build a foundation for further definition of the pathways activated by mitochondrial ROS that led to neuronal dysfunction and death. Identification of these underlying mechanisms allows for future prevention of toxicant exposure-induced PD based on mechanistic knowledge.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"81 ","pages":"Article 103538"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725000515","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's Disease (PD) is the 2nd most prevalent neurodegenerative disease, but there is currently no cure and limited understanding of the pathogenesis resulting in dopaminergic neurodegeneration. Inhibitors of electron transport chain Complex I (CI) have long been associated with and are now used to model PD, but CI inhibition results in multiple effects including ATP depletion and reactive oxygen species (ROS) generation. The lack of tools to isolate effects of CI inhibition have rendered it difficult to determine which mechanistic step is critical for CI inhibitor-induced dopaminergic neurodegeneration. Here we report that CI-derived superoxide anion, not ATP depletion, is the critical driver of CI inhibitor-induced dopaminergic neurodegeneration in the model organism Caenorhabditis elegans. We first use SuperNova, a light-activated ROS-generating protein, fused to CI to demonstrate that in absence of enzymatic inhibition CI-localized ROS production is sufficient to drive morphological damage and loss of function of the dopaminergic neurons. Second, we prevented superoxide anion production during exposure to the CI inhibitors rotenone and pyridaben and report a full rescue of CI inhibitor-induced degeneration and functional loss, without rescue of inhibitor-induced ATP depletion. We highlight the importance of mitochondrial superoxide anion generation in the pathogenesis of PD and build a foundation for further definition of the pathways activated by mitochondrial ROS that led to neuronal dysfunction and death. Identification of these underlying mechanisms allows for future prevention of toxicant exposure-induced PD based on mechanistic knowledge.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.