Jong-Sub Lee , Si Hyeon Jeong , Geunwoo Park , YoungSeok Kim , Erol Tutumluer , Sang Yeob Kim
{"title":"Geotechnical Application of Unmanned Aerial Vehicle (UAV) for Estimation of Ground Settlement after Filling and Compaction","authors":"Jong-Sub Lee , Si Hyeon Jeong , Geunwoo Park , YoungSeok Kim , Erol Tutumluer , Sang Yeob Kim","doi":"10.1016/j.trgeo.2025.101517","DOIUrl":null,"url":null,"abstract":"<div><div>In geotechnical engineering field, unmanned aerial vehicles (UAV) have been widely used to monitor ground deformation. The objective of this study is to apply the UAV in the field and compare it with the on-site dynamic cone penetration test (DCPT), considering the ground deformation and strength characteristics. The calibration test results show that a flight altitude of 25 m, side-frontal overlap of 80–80 %, and camera angle at 80° is the most reliable compositions. For the field test, UAV scanning using the data model generated by the point cloud and DCPT up to a depth of 500 mm after filling and compaction were conducted. The field test results revealed that the ground settlement measured by the UAV and on-site test was similar, and a larger settlement occurred when the ground was weaker. Thus, the UAV can be efficiently used to assess the strength characteristics as well as ground settlement.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"51 ","pages":"Article 101517"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225000364","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In geotechnical engineering field, unmanned aerial vehicles (UAV) have been widely used to monitor ground deformation. The objective of this study is to apply the UAV in the field and compare it with the on-site dynamic cone penetration test (DCPT), considering the ground deformation and strength characteristics. The calibration test results show that a flight altitude of 25 m, side-frontal overlap of 80–80 %, and camera angle at 80° is the most reliable compositions. For the field test, UAV scanning using the data model generated by the point cloud and DCPT up to a depth of 500 mm after filling and compaction were conducted. The field test results revealed that the ground settlement measured by the UAV and on-site test was similar, and a larger settlement occurred when the ground was weaker. Thus, the UAV can be efficiently used to assess the strength characteristics as well as ground settlement.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.