Application of an experimental design approach to optimize aging protocols for lithium-metal batteries

Eugenio Sandrucci , Matteo Palluzzi , Sergio Brutti , Arcangelo Celeste , Aleksandar Matic , Federico Marini
{"title":"Application of an experimental design approach to optimize aging protocols for lithium-metal batteries","authors":"Eugenio Sandrucci ,&nbsp;Matteo Palluzzi ,&nbsp;Sergio Brutti ,&nbsp;Arcangelo Celeste ,&nbsp;Aleksandar Matic ,&nbsp;Federico Marini","doi":"10.1016/j.fub.2025.100041","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid expansion of the electric vehicle (EV) market has necessitated the use of high-performance battery packs, predominantly lithium-ion batteries (LIBs). Their implementation in devices and adaptation to specific applications can profit of computational models able to predict their functional behaviour and aging. However, the advancement of LIBs is constrained by the chemical and electrochemical limits of their materials, leading to interest in lithium metal batteries (LMBs) due to lithium's superior theoretical specific capacity and redox potential. Despite the potential advantages of LMBs, challenges such as uneven metal deposition leading to continuous side reaction with the electrolyte, active material loss through formation of dead Li, dendrite formation and safety issues hinder their practical application. These critical points limited the developments of reliable predictive models to outline in silico the functional properties of LMBs and aging. This study aims to develop a computational tool to monitor the state-of-health (SOH) of LMBs and predict capacity fading. A D-optimal experimental design approach was employed to systematically investigate the effects of various aging factors, including state of charge (SOC), C-rate, rest time, and depth of discharge (DoD) on LMB performance by selecting 18 compatible experimental cycling conditions. Starting from this dataset a regression framework was utilized to model the SOH, providing key insights into the aging mechanisms. The results indicate that while overall capacity loss correlates with the selected variables, the specific impact on open-circuit voltage changes was less pronounced. This study highlights the effectiveness of combining experimental design and chemometric analysis to enhance our understanding of LMB aging, thereby paving the way for improved battery health monitoring and management strategies.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"5 ","pages":"Article 100041"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid expansion of the electric vehicle (EV) market has necessitated the use of high-performance battery packs, predominantly lithium-ion batteries (LIBs). Their implementation in devices and adaptation to specific applications can profit of computational models able to predict their functional behaviour and aging. However, the advancement of LIBs is constrained by the chemical and electrochemical limits of their materials, leading to interest in lithium metal batteries (LMBs) due to lithium's superior theoretical specific capacity and redox potential. Despite the potential advantages of LMBs, challenges such as uneven metal deposition leading to continuous side reaction with the electrolyte, active material loss through formation of dead Li, dendrite formation and safety issues hinder their practical application. These critical points limited the developments of reliable predictive models to outline in silico the functional properties of LMBs and aging. This study aims to develop a computational tool to monitor the state-of-health (SOH) of LMBs and predict capacity fading. A D-optimal experimental design approach was employed to systematically investigate the effects of various aging factors, including state of charge (SOC), C-rate, rest time, and depth of discharge (DoD) on LMB performance by selecting 18 compatible experimental cycling conditions. Starting from this dataset a regression framework was utilized to model the SOH, providing key insights into the aging mechanisms. The results indicate that while overall capacity loss correlates with the selected variables, the specific impact on open-circuit voltage changes was less pronounced. This study highlights the effectiveness of combining experimental design and chemometric analysis to enhance our understanding of LMB aging, thereby paving the way for improved battery health monitoring and management strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信