Presence of Micropollutants and Transformation Products During Subsurface Irrigation with Treated Wastewater Assessed by Non-Target Screening Analysis

IF 4.8 Q1 ENVIRONMENTAL SCIENCES
Alessia Ore, Rick Helmus, Dominique M. Narain-Ford, Ruud P. Bartholomeus, Nora B. Sutton* and Annemarie van Wezel, 
{"title":"Presence of Micropollutants and Transformation Products During Subsurface Irrigation with Treated Wastewater Assessed by Non-Target Screening Analysis","authors":"Alessia Ore,&nbsp;Rick Helmus,&nbsp;Dominique M. Narain-Ford,&nbsp;Ruud P. Bartholomeus,&nbsp;Nora B. Sutton* and Annemarie van Wezel,&nbsp;","doi":"10.1021/acsestwater.4c0093010.1021/acsestwater.4c00930","DOIUrl":null,"url":null,"abstract":"<p >While wastewater treatment plant (WWTP) effluent offers a potential alternative source for irrigation, the fate of organic micropollutants (OMPs), including transformation products (TPs), in effluent-irrigated fields remains largely unknown. Using non-target analysis (NTA), we investigated OMPs in WWTP effluent and their distribution throughout a full-scale subsurface irrigation (SSI) field where effluent was used for irrigation. Our results indicate that TPs accounted for approximately 80% of the detected effluent OMPs. Weather and SSI hydrology seem to influence OMP distribution and transformation. Wetter conditions promoted deeper leaching of OMPs in soil, and drier conditions favored their capillary rise and biotransformation, as shown by the detection of 37% more TPs in the rhizons during a dry year. On average 45 OMPs, at least 50% with a logD &lt;3, were detected at −2.3 m depth, highlighting their potential to reach groundwater and the importance of including TPs in further risk assessment. This approach demonstrates how NTA and subsequent data analysis tools can support the identification of (unknown) OMPs and contribute to understanding OMP fate under field conditions, which is the first step in an exposure-driven environmental risk assessment. Overall, our study emphasizes the importance of carefully considering (unknown) OMPs for more responsible effluent reuse.</p><p >Through novel methods, we investigated the presence of micropollutants and unknown transformation products in wastewater treatment plant effluent and a field reusing the effluent via subsurface irrigation.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 2","pages":"891–901 891–901"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestwater.4c00930","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c00930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

While wastewater treatment plant (WWTP) effluent offers a potential alternative source for irrigation, the fate of organic micropollutants (OMPs), including transformation products (TPs), in effluent-irrigated fields remains largely unknown. Using non-target analysis (NTA), we investigated OMPs in WWTP effluent and their distribution throughout a full-scale subsurface irrigation (SSI) field where effluent was used for irrigation. Our results indicate that TPs accounted for approximately 80% of the detected effluent OMPs. Weather and SSI hydrology seem to influence OMP distribution and transformation. Wetter conditions promoted deeper leaching of OMPs in soil, and drier conditions favored their capillary rise and biotransformation, as shown by the detection of 37% more TPs in the rhizons during a dry year. On average 45 OMPs, at least 50% with a logD <3, were detected at −2.3 m depth, highlighting their potential to reach groundwater and the importance of including TPs in further risk assessment. This approach demonstrates how NTA and subsequent data analysis tools can support the identification of (unknown) OMPs and contribute to understanding OMP fate under field conditions, which is the first step in an exposure-driven environmental risk assessment. Overall, our study emphasizes the importance of carefully considering (unknown) OMPs for more responsible effluent reuse.

Through novel methods, we investigated the presence of micropollutants and unknown transformation products in wastewater treatment plant effluent and a field reusing the effluent via subsurface irrigation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信