Johan Garcia , Matthias Beckerle , Simon Sundberg , Anna Brunstrom
{"title":"Modeling and predicting starlink throughput with fine-grained burst characterization","authors":"Johan Garcia , Matthias Beckerle , Simon Sundberg , Anna Brunstrom","doi":"10.1016/j.comcom.2025.108090","DOIUrl":null,"url":null,"abstract":"<div><div>Leveraging a dataset of almost half a billion packets with high-precision packet times and sizes, we extract characteristics of the bursts emitted over Starlink’s Ethernet interface. The structure of these bursts directly reflects the physical layer reception of OFDMA frames on the satellite link. We study these bursts by analyzing their rates, and thus indirectly also the transition between different physical layer rates. The results highlight that there is definitive structure in the transition behavior, and we note specific behaviors such as particular transition steps associated with rate switching, and that rate switching occurs mainly to neighboring rates. We also study the joint burst rate and burst duration transitions, noting that transitions occur mainly within the same rate, and that changes in burst duration are often performed with an intermediate short burst in-between. Furthermore, we examine the configurations of the three factors burst rate, burst duration, and inter-burst silent time, which together determine the effective throughput of a Starlink connection. We perform pattern mining on these three factors, and we use the patterns to construct a dynamic N-gram model predicting the characteristics of the next upcoming burst, and by extension, the short-term future throughput. We further train a Deep Learning time-series model which shows improved prediction performance.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"234 ","pages":"Article 108090"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366425000477","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Leveraging a dataset of almost half a billion packets with high-precision packet times and sizes, we extract characteristics of the bursts emitted over Starlink’s Ethernet interface. The structure of these bursts directly reflects the physical layer reception of OFDMA frames on the satellite link. We study these bursts by analyzing their rates, and thus indirectly also the transition between different physical layer rates. The results highlight that there is definitive structure in the transition behavior, and we note specific behaviors such as particular transition steps associated with rate switching, and that rate switching occurs mainly to neighboring rates. We also study the joint burst rate and burst duration transitions, noting that transitions occur mainly within the same rate, and that changes in burst duration are often performed with an intermediate short burst in-between. Furthermore, we examine the configurations of the three factors burst rate, burst duration, and inter-burst silent time, which together determine the effective throughput of a Starlink connection. We perform pattern mining on these three factors, and we use the patterns to construct a dynamic N-gram model predicting the characteristics of the next upcoming burst, and by extension, the short-term future throughput. We further train a Deep Learning time-series model which shows improved prediction performance.
期刊介绍:
Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms.
Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.