Achieving Higher Activity of Acidic Oxygen Evolution Reaction Using an Atomically Thin Layer of IrOx over Co3O4

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gengnan Li, Adyasa Priyadarsini, Zhenhua Xie, Sinwoo Kang, Yuzi Liu, Xiaobo Chen, Shyam Kattel, Jingguang G. Chen
{"title":"Achieving Higher Activity of Acidic Oxygen Evolution Reaction Using an Atomically Thin Layer of IrOx over Co3O4","authors":"Gengnan Li, Adyasa Priyadarsini, Zhenhua Xie, Sinwoo Kang, Yuzi Liu, Xiaobo Chen, Shyam Kattel, Jingguang G. Chen","doi":"10.1021/jacs.4c17915","DOIUrl":null,"url":null,"abstract":"The development of electrocatalysts with reduced iridium (Ir) loading for the oxygen evolution reaction (OER) is essential to produce low-cost green hydrogen from water electrolysis under acidic conditions. Herein, an atomically thin layer of iridium oxide (IrO<sub><i>x</i></sub>) has been uniformly dispersed onto cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) nanocrystals to improve the efficient use of Ir for acidic OER. In situ characterization and theoretical calculations reveal that compared to the conventional IrO<sub><i>x</i></sub> cluster, the atomically thin layer of IrO<sub><i>x</i></sub> shows stronger interaction with the Co<sub>3</sub>O<sub>4</sub> and consequently higher OER activity due to the Ir–O–Co bond formation at the interface. Equally important, the facile synthetic method and the promising activity in the proton exchange membrane water electrolyzer, reaching 1 A cm<sup>–2</sup> at 1.7 V with remarkable durability, enable potential scale-up applications. These findings provide a mechanistic understanding for designing active, stable and lower-cost electrocatalysts with well-defined structures for acidic OER.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"40 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17915","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of electrocatalysts with reduced iridium (Ir) loading for the oxygen evolution reaction (OER) is essential to produce low-cost green hydrogen from water electrolysis under acidic conditions. Herein, an atomically thin layer of iridium oxide (IrOx) has been uniformly dispersed onto cobalt oxide (Co3O4) nanocrystals to improve the efficient use of Ir for acidic OER. In situ characterization and theoretical calculations reveal that compared to the conventional IrOx cluster, the atomically thin layer of IrOx shows stronger interaction with the Co3O4 and consequently higher OER activity due to the Ir–O–Co bond formation at the interface. Equally important, the facile synthetic method and the promising activity in the proton exchange membrane water electrolyzer, reaching 1 A cm–2 at 1.7 V with remarkable durability, enable potential scale-up applications. These findings provide a mechanistic understanding for designing active, stable and lower-cost electrocatalysts with well-defined structures for acidic OER.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信