Heat-shock chaperone HSPB1 mitigates poly-glycine-induced neurodegeneration via restoration of autophagic flux.

Ning Ding, Yijie Song, Yuhang Zhang, Wei Yu, Xinnan Li, Wei Li, Lei Li
{"title":"Heat-shock chaperone HSPB1 mitigates poly-glycine-induced neurodegeneration via restoration of autophagic flux.","authors":"Ning Ding, Yijie Song, Yuhang Zhang, Wei Yu, Xinnan Li, Wei Li, Lei Li","doi":"10.1080/15548627.2025.2466144","DOIUrl":null,"url":null,"abstract":"<p><p>The CGG repeat expansions in the 5\"-UTR regions of certain genes have been implicated in various neurodegenerative and muscular disorders. However, the underlying pathogenic mechanisms are not well understood. In this study, we explore the role of the small molecular chaperone HSPB1 in counteracting neurodegeneration induced by poly-glycine (poly-G) aggregates. Employing a reporter system, we demonstrate that CGG repeat expansions within the 5\"-UTR of the <i>GIPC1</i> gene produce poly-G proteins, by repeat-associated non-AUG (RAN) translation. Through proximity labeling and subsequent mass spectrometry analysis, we characterize the composition of poly-G insoluble aggregates and reveal that these aggregates sequester key macroautophagy/autophagy receptors, SQSTM1/p62 and TOLLIP. This sequestration disrupts MAP1LC3/LC3 recruitment and impairs autophagosome formation, thereby compromising the autophagic pathway. Importantly, we show that HSPB1 facilitates the dissociation of these receptors from poly-G aggregates and consequently restores autophagic function. Overexpressing HSPB1 alleviates poly-G-induced neurodegeneration in mouse models. Taken together, these findings highlight a mechanistic basis for the neuroprotective effects of HSPB1 and suggest its potential as a therapeutic target in treating poly-G-associated neurodegenerative diseases.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2466144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The CGG repeat expansions in the 5"-UTR regions of certain genes have been implicated in various neurodegenerative and muscular disorders. However, the underlying pathogenic mechanisms are not well understood. In this study, we explore the role of the small molecular chaperone HSPB1 in counteracting neurodegeneration induced by poly-glycine (poly-G) aggregates. Employing a reporter system, we demonstrate that CGG repeat expansions within the 5"-UTR of the GIPC1 gene produce poly-G proteins, by repeat-associated non-AUG (RAN) translation. Through proximity labeling and subsequent mass spectrometry analysis, we characterize the composition of poly-G insoluble aggregates and reveal that these aggregates sequester key macroautophagy/autophagy receptors, SQSTM1/p62 and TOLLIP. This sequestration disrupts MAP1LC3/LC3 recruitment and impairs autophagosome formation, thereby compromising the autophagic pathway. Importantly, we show that HSPB1 facilitates the dissociation of these receptors from poly-G aggregates and consequently restores autophagic function. Overexpressing HSPB1 alleviates poly-G-induced neurodegeneration in mouse models. Taken together, these findings highlight a mechanistic basis for the neuroprotective effects of HSPB1 and suggest its potential as a therapeutic target in treating poly-G-associated neurodegenerative diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信