Heat-shock chaperone HSPB1 mitigates poly-glycine-induced neurodegeneration via restoration of autophagic flux.

Autophagy Pub Date : 2025-06-01 Epub Date: 2025-02-25 DOI:10.1080/15548627.2025.2466144
Ning Ding, Yijie Song, Yuhang Zhang, Wei Yu, Xinnan Li, Wei Li, Lei Li
{"title":"Heat-shock chaperone HSPB1 mitigates poly-glycine-induced neurodegeneration via restoration of autophagic flux.","authors":"Ning Ding, Yijie Song, Yuhang Zhang, Wei Yu, Xinnan Li, Wei Li, Lei Li","doi":"10.1080/15548627.2025.2466144","DOIUrl":null,"url":null,"abstract":"<p><p>The CGG repeat expansions in the 5'-UTR regions of certain genes have been implicated in various neurodegenerative and muscular disorders. However, the underlying pathogenic mechanisms are not well understood. In this study, we explore the role of the small molecular chaperone HSPB1 in counteracting neurodegeneration induced by poly-glycine (poly-G) aggregates. Employing a reporter system, we demonstrate that CGG repeat expansions within the 5'-UTR of the <i>GIPC1</i> gene produce poly-G proteins, by repeat-associated non-AUG (RAN) translation. Through proximity labeling and subsequent mass spectrometry analysis, we characterize the composition of poly-G insoluble aggregates and reveal that these aggregates sequester key macroautophagy/autophagy receptors, SQSTM1/p62 and TOLLIP. This sequestration disrupts MAP1LC3/LC3 recruitment and impairs autophagosome formation, thereby compromising the autophagic pathway. Importantly, we show that HSPB1 facilitates the dissociation of these receptors from poly-G aggregates and consequently restores autophagic function. Overexpressing HSPB1 alleviates poly-G-induced neurodegeneration in mouse models. Taken together, these findings highlight a mechanistic basis for the neuroprotective effects of HSPB1 and suggest its potential as a therapeutic target in treating poly-G-associated neurodegenerative diseases.<b>Abbreviations</b>: AD: Alzheimer disease; AIF1/Iba1: allograft inflammatory factor 1; Baf A<sub>1</sub>: bafilomycin A<sub>1</sub>; BFP: blue fluorescent protein; CQ: chloroquine; EIF2A/eIF-2α: eukaryotic translation initiation factor 2A; FRAP: fluorescence recovery after photobleaching; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFAP: glial fibrillary acidic protein; GFP: green fluorescent protein; HSPB1: heat shock protein family B (small) member 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; NOTCH2NLC: notch 2 N-terminal like C; PD: Parkinson disease; PFA: paraformaldehyde; poly-A: poly-alanine; poly-G: poly-glycine; poly-R: poly-arginine; RAN translation: repeat-associated non-AUG translation; RBFOX3/NeuN: RNA binding fox-1 homolog 3; STED: stimulated emission depletion; TARDBP/TDP-43: TAR DNA binding protein; TG: thapsigargin; TOLLIP: toll interacting protein.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1298-1315"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2466144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The CGG repeat expansions in the 5'-UTR regions of certain genes have been implicated in various neurodegenerative and muscular disorders. However, the underlying pathogenic mechanisms are not well understood. In this study, we explore the role of the small molecular chaperone HSPB1 in counteracting neurodegeneration induced by poly-glycine (poly-G) aggregates. Employing a reporter system, we demonstrate that CGG repeat expansions within the 5'-UTR of the GIPC1 gene produce poly-G proteins, by repeat-associated non-AUG (RAN) translation. Through proximity labeling and subsequent mass spectrometry analysis, we characterize the composition of poly-G insoluble aggregates and reveal that these aggregates sequester key macroautophagy/autophagy receptors, SQSTM1/p62 and TOLLIP. This sequestration disrupts MAP1LC3/LC3 recruitment and impairs autophagosome formation, thereby compromising the autophagic pathway. Importantly, we show that HSPB1 facilitates the dissociation of these receptors from poly-G aggregates and consequently restores autophagic function. Overexpressing HSPB1 alleviates poly-G-induced neurodegeneration in mouse models. Taken together, these findings highlight a mechanistic basis for the neuroprotective effects of HSPB1 and suggest its potential as a therapeutic target in treating poly-G-associated neurodegenerative diseases.Abbreviations: AD: Alzheimer disease; AIF1/Iba1: allograft inflammatory factor 1; Baf A1: bafilomycin A1; BFP: blue fluorescent protein; CQ: chloroquine; EIF2A/eIF-2α: eukaryotic translation initiation factor 2A; FRAP: fluorescence recovery after photobleaching; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFAP: glial fibrillary acidic protein; GFP: green fluorescent protein; HSPB1: heat shock protein family B (small) member 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; NOTCH2NLC: notch 2 N-terminal like C; PD: Parkinson disease; PFA: paraformaldehyde; poly-A: poly-alanine; poly-G: poly-glycine; poly-R: poly-arginine; RAN translation: repeat-associated non-AUG translation; RBFOX3/NeuN: RNA binding fox-1 homolog 3; STED: stimulated emission depletion; TARDBP/TDP-43: TAR DNA binding protein; TG: thapsigargin; TOLLIP: toll interacting protein.

热休克伴侣HSPB1通过恢复自噬通量减轻多甘氨酸诱导的神经变性。
某些基因的5 ' -UTR区域的CGG重复扩增与各种神经退行性和肌肉疾病有关。然而,潜在的致病机制尚不清楚。在这项研究中,我们探讨了小分子伴侣HSPB1在对抗聚甘氨酸(聚g)聚集体诱导的神经变性中的作用。利用一个报告系统,我们证明了在GIPC1基因的5 ' -UTR内的CGG重复扩增通过重复相关的非aug (RAN)翻译产生多g蛋白。通过接近标记和随后的质谱分析,我们表征了聚g不溶性聚集体的组成,并揭示了这些聚集体隔离了关键的巨噬/自噬受体SQSTM1/p62和TOLLIP。这种隔离破坏了MAP1LC3/LC3的招募,损害了自噬体的形成,从而破坏了自噬途径。重要的是,我们发现HSPB1促进了这些受体与聚g聚集体的分离,从而恢复了自噬功能。在小鼠模型中,过表达HSPB1可减轻多聚g诱导的神经变性。综上所述,这些发现强调了HSPB1神经保护作用的机制基础,并提示其作为治疗多聚g相关神经退行性疾病的治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信