Qin Li, Satoru Onizuka, Kyoungmin Park, Mingming Ma, Ward Fickweiler, Hyunseok Park, Qian Li, Fabricio Simao, Jared Boisclair, Maha Sharawy, I-Hsien Wu, Marc Gregory Yu, Lloyd P Aiello, Jennifer K Sun, George L King
{"title":"Differential Effects of Retinol-Binding Protein 3 and Anti-VEGF Antibodies on Retinal Dysfunctions in Diabetic Retinopathy.","authors":"Qin Li, Satoru Onizuka, Kyoungmin Park, Mingming Ma, Ward Fickweiler, Hyunseok Park, Qian Li, Fabricio Simao, Jared Boisclair, Maha Sharawy, I-Hsien Wu, Marc Gregory Yu, Lloyd P Aiello, Jennifer K Sun, George L King","doi":"10.2337/db24-0822","DOIUrl":null,"url":null,"abstract":"<p><p>Anti-vascular endothelial growth factor (anti-VEGF) therapies are effective treatment for severe diabetic retinopathy (DR) and macular edema, but a significant subset of people had inadequate response to anti-VEGF intervention. Because elevation or overexpression of retinol binding protein 3 (RBP3) decreases risks for retinal pathologies and progression to severe DR, we compared the therapeutic profiles of RBP3 and anti-VEGF antibody to normalize retinal dysfunctions induced by diabetes. Intravitreous injection of recombinant human RBP3 (rhRBP3) and anti-VEGF antibody (namely, bevacizumab) inhibited retinal vascular permeability in Lewis rats induced by VEGF-A or after 2 months of diabetes induced by streptozotocin, in parallel with reductions of retinal VEGF and VEGF receptor 2 expressions and tyrosine phosphorylation of VEGF receptor. Only rhRBP3 ameliorated diabetes-induced reduction of neural retinal function, measured by electroretinogram. Furthermore, rhRBP3 reduced retinal expressions of inflammatory cytokines (TNF-α and IL-6) in retinal pigmented epithelial and Müller cells exposed to hyperglycemia. Metabolic studies, using a Seahorse flux analyzer, showed only rhRBP3 normalized retinal glycolytic rates in diabetic rats. Thus, both intravitreous anti-VEGF antibody and RBP3 injections normalized retinal vascular dysfunctions caused by diabetes. Only RBP3 targeted both neural and vascular retina to reduce glycolytic rates, reverse neural-retinal dysfunctions, and reduce inflammatory cytokines induced by diabetes, to delay early changes of DR.</p><p><strong>Article highlights: </strong></p>","PeriodicalId":93977,"journal":{"name":"Diabetes","volume":" ","pages":"787-797"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12015138/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2337/db24-0822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Anti-vascular endothelial growth factor (anti-VEGF) therapies are effective treatment for severe diabetic retinopathy (DR) and macular edema, but a significant subset of people had inadequate response to anti-VEGF intervention. Because elevation or overexpression of retinol binding protein 3 (RBP3) decreases risks for retinal pathologies and progression to severe DR, we compared the therapeutic profiles of RBP3 and anti-VEGF antibody to normalize retinal dysfunctions induced by diabetes. Intravitreous injection of recombinant human RBP3 (rhRBP3) and anti-VEGF antibody (namely, bevacizumab) inhibited retinal vascular permeability in Lewis rats induced by VEGF-A or after 2 months of diabetes induced by streptozotocin, in parallel with reductions of retinal VEGF and VEGF receptor 2 expressions and tyrosine phosphorylation of VEGF receptor. Only rhRBP3 ameliorated diabetes-induced reduction of neural retinal function, measured by electroretinogram. Furthermore, rhRBP3 reduced retinal expressions of inflammatory cytokines (TNF-α and IL-6) in retinal pigmented epithelial and Müller cells exposed to hyperglycemia. Metabolic studies, using a Seahorse flux analyzer, showed only rhRBP3 normalized retinal glycolytic rates in diabetic rats. Thus, both intravitreous anti-VEGF antibody and RBP3 injections normalized retinal vascular dysfunctions caused by diabetes. Only RBP3 targeted both neural and vascular retina to reduce glycolytic rates, reverse neural-retinal dysfunctions, and reduce inflammatory cytokines induced by diabetes, to delay early changes of DR.