ESRRA (estrogen related receptor, alpha) induces ribosomal protein RPLP1-mediated adaptive hepatic translation during prolonged starvation.

Madhulika Tripathi, Karine Gauthier, Reddemma Sandireddy, Jin Zhou, Priyanka Gupta, Suganya Sakthivel, Nah Jiemin, Kabilesh Arul, Keziah Tikno, Sung-Hee Park, Yajun Wu, Lijin Wang, Boon-Huat Bay, Lena Ho, Vincent Giguere, Sujoy Ghosh, Donald P McDonnell, Paul M Yen, Brijesh K Singh
{"title":"ESRRA (estrogen related receptor, alpha) induces ribosomal protein RPLP1-mediated adaptive hepatic translation during prolonged starvation.","authors":"Madhulika Tripathi, Karine Gauthier, Reddemma Sandireddy, Jin Zhou, Priyanka Gupta, Suganya Sakthivel, Nah Jiemin, Kabilesh Arul, Keziah Tikno, Sung-Hee Park, Yajun Wu, Lijin Wang, Boon-Huat Bay, Lena Ho, Vincent Giguere, Sujoy Ghosh, Donald P McDonnell, Paul M Yen, Brijesh K Singh","doi":"10.1080/15548627.2025.2465183","DOIUrl":null,"url":null,"abstract":"<p><p>Protein translation is an energy-intensive ribosome-driven process that is reduced during nutrient scarcity to conserve cellular resources. During prolonged starvation, cells selectively translate specific proteins to enhance their survival (adaptive translation); however, this process is poorly understood. Accordingly, we analyzed protein translation and mRNA transcription by multiple methods <i>in vitro</i> and <i>in vivo</i> to investigate adaptive hepatic translation during starvation. While acute starvation suppressed protein translation in general, proteomic analysis showed that prolonged starvation selectively induced translation of lysosome and autolysosome proteins. Significantly, the expression of the orphan nuclear receptor, ESRRA (estrogen related receptor, alpha) increased during prolonged starvation and served as a master regulator of this adaptive translation by transcriptionally stimulating <i>Rplp1</i> (ribosomal protein lateral stalk subunit P1) gene expression. Overexpression or siRNA knockdown of <i>Esrra in vitro</i> or <i>in vivo</i> led to parallel changes in <i>Rplp1</i> gene expression, lysosome and macroautophagy/autophagy protein translation, and autophagy activity. Remarkably, we have found that ESRRA had dual functions by not only regulating transcription but also controlling adaptive translation via the ESRRA-RPLP1-lysosome-autophagy pathway during prolonged starvation.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2465183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Protein translation is an energy-intensive ribosome-driven process that is reduced during nutrient scarcity to conserve cellular resources. During prolonged starvation, cells selectively translate specific proteins to enhance their survival (adaptive translation); however, this process is poorly understood. Accordingly, we analyzed protein translation and mRNA transcription by multiple methods in vitro and in vivo to investigate adaptive hepatic translation during starvation. While acute starvation suppressed protein translation in general, proteomic analysis showed that prolonged starvation selectively induced translation of lysosome and autolysosome proteins. Significantly, the expression of the orphan nuclear receptor, ESRRA (estrogen related receptor, alpha) increased during prolonged starvation and served as a master regulator of this adaptive translation by transcriptionally stimulating Rplp1 (ribosomal protein lateral stalk subunit P1) gene expression. Overexpression or siRNA knockdown of Esrra in vitro or in vivo led to parallel changes in Rplp1 gene expression, lysosome and macroautophagy/autophagy protein translation, and autophagy activity. Remarkably, we have found that ESRRA had dual functions by not only regulating transcription but also controlling adaptive translation via the ESRRA-RPLP1-lysosome-autophagy pathway during prolonged starvation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信