L Heinemann, I Adcock, K F Chung, W Lollinga, M N Hylkema, A Papi, G Caramori, P A Kirkham
{"title":"Auto-antibodies against carbonyl-modified vimentin in COPD: potential role as a biomarker.","authors":"L Heinemann, I Adcock, K F Chung, W Lollinga, M N Hylkema, A Papi, G Caramori, P A Kirkham","doi":"10.1186/s12950-025-00434-0","DOIUrl":null,"url":null,"abstract":"<p><p>COPD has many hallmarks of autoimmune dysfunction. Driving this autoimmune response are self-antigens, such as highly abundant structural proteins and cellular proteins, which can lead to the production of auto-antibodies. However, controversy surrounds the detection of some of these auto-antibodies as they have often been screened against native, unmodified proteins. Autoantigens arise as a result of a conformational change in the native protein exposing hidden epitopes or by the creation of neo-epitopes through chemical or enzymatic modifications, often caused by oxidative/carbonyl stress. In this study, we screened for auto-antibodies targeting key structural proteins modified by oxidative/carbonyl stress in peripheral blood from stable COPD patients versus control subjects using ELISA. We found an auto-antibody response against unmodified, carbonyl-modified and citrinylated vimentin, with the highest response observed against carbonyl-modified vimentin. Both the IgG and IgM antibody titres against carbonyl-modified were significantly increased in COPD patients compared to healthy non-smokers. Smokers also displayed increased antibody levels against carbonyl-modified vimentin, but only for the IgG isotype. Selectivity analysis indicated that 70% and 63% of COPD patients had higher IgM and IgG titres, respectively, compared to non-smokers. In contrast only 26% and 48% of smokers had higher IgM and IgG titres, respectively, than non-smokers. ROC analysis gave AUC values of 0.78 (p < 0.01) and 0.84 (p < 0.001) for IgM and IgG, respectively, for COPD versus non-smokers, which fell to 0.70 (p < 0.01) and 0.64 (NS), respectively, when asymptomatic smokers were included. No significant increase in antibody titre against carbonyl-modified elastin or collagen was observed in COPD patients or asymptomatic smokers. We conclude that IgM autoantibody responses against carbonyl modified vimentin could serve as a simple blood-based biomarker for COPD, reflecting the disease's pathophysiology, and could help in patient stratification and diagnosis.</p>","PeriodicalId":56120,"journal":{"name":"Journal of Inflammation-London","volume":"22 1","pages":"7"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817093/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12950-025-00434-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
COPD has many hallmarks of autoimmune dysfunction. Driving this autoimmune response are self-antigens, such as highly abundant structural proteins and cellular proteins, which can lead to the production of auto-antibodies. However, controversy surrounds the detection of some of these auto-antibodies as they have often been screened against native, unmodified proteins. Autoantigens arise as a result of a conformational change in the native protein exposing hidden epitopes or by the creation of neo-epitopes through chemical or enzymatic modifications, often caused by oxidative/carbonyl stress. In this study, we screened for auto-antibodies targeting key structural proteins modified by oxidative/carbonyl stress in peripheral blood from stable COPD patients versus control subjects using ELISA. We found an auto-antibody response against unmodified, carbonyl-modified and citrinylated vimentin, with the highest response observed against carbonyl-modified vimentin. Both the IgG and IgM antibody titres against carbonyl-modified were significantly increased in COPD patients compared to healthy non-smokers. Smokers also displayed increased antibody levels against carbonyl-modified vimentin, but only for the IgG isotype. Selectivity analysis indicated that 70% and 63% of COPD patients had higher IgM and IgG titres, respectively, compared to non-smokers. In contrast only 26% and 48% of smokers had higher IgM and IgG titres, respectively, than non-smokers. ROC analysis gave AUC values of 0.78 (p < 0.01) and 0.84 (p < 0.001) for IgM and IgG, respectively, for COPD versus non-smokers, which fell to 0.70 (p < 0.01) and 0.64 (NS), respectively, when asymptomatic smokers were included. No significant increase in antibody titre against carbonyl-modified elastin or collagen was observed in COPD patients or asymptomatic smokers. We conclude that IgM autoantibody responses against carbonyl modified vimentin could serve as a simple blood-based biomarker for COPD, reflecting the disease's pathophysiology, and could help in patient stratification and diagnosis.
期刊介绍:
Journal of Inflammation welcomes research submissions on all aspects of inflammation.
The five classical symptoms of inflammation, namely redness (rubor), swelling (tumour), heat (calor), pain (dolor) and loss of function (functio laesa), are only part of the story. The term inflammation is taken to include the full range of underlying cellular and molecular mechanisms involved, not only in the production of the inflammatory responses but, more importantly in clinical terms, in the healing process as well. Thus the journal covers molecular, cellular, animal and clinical studies, and related aspects of pharmacology, such as anti-inflammatory drug development, trials and therapeutic developments. It also considers publication of negative findings.
Journal of Inflammation aims to become the leading online journal on inflammation and, as online journals replace printed ones over the next decade, the main open access inflammation journal. Open access guarantees a larger audience, and thus impact, than any restricted access equivalent, and increasingly so, as the escalating costs of printed journals puts them outside University budgets. The unrestricted access to research findings in inflammation aids in promoting dynamic and productive dialogue between industrial and academic members of the inflammation research community, which plays such an important part in the development of future generations of anti-inflammatory therapies.