{"title":"Extracellular vesicles in Helicobacter pylori-mediated diseases: mechanisms and therapeutic potential.","authors":"Jianjun Wang, Xiuping Wang, Hao Luo, Yiping Xie, Hui Cao, Lingxiang Mao, Tingting Liu, Yushan Yue, Hui Qian","doi":"10.1186/s12964-025-02074-6","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are relevant elements for cell-to-cell communication and are considered crucial in host-pathogen interactions by transferring molecules between the pathogen and the host during infections. These structures participate in various physiological and pathological processes and are considered promising candidates as disease markers, therapeutic reagents, and drug carriers. Both H. pylori and the host epithelial cells infected by H. pylori secrete EVs, which contribute to inflammation and the development of disease phenotypes. However, many aspects of the cellular and molecular biology of EV functions remain incompletely understood due to methodological challenges in studying these small structures. This review also highlights the roles of EVs derived from H. pylori-infected cells in the pathogenesis of gastric and extragastric diseases. Understanding the specific functions of these EVs during H. pylori infections, whether are advantageous to the host or the pathogen, may help the development new therapeutic approaches to prevent disease.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"79"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816533/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02074-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles (EVs) are relevant elements for cell-to-cell communication and are considered crucial in host-pathogen interactions by transferring molecules between the pathogen and the host during infections. These structures participate in various physiological and pathological processes and are considered promising candidates as disease markers, therapeutic reagents, and drug carriers. Both H. pylori and the host epithelial cells infected by H. pylori secrete EVs, which contribute to inflammation and the development of disease phenotypes. However, many aspects of the cellular and molecular biology of EV functions remain incompletely understood due to methodological challenges in studying these small structures. This review also highlights the roles of EVs derived from H. pylori-infected cells in the pathogenesis of gastric and extragastric diseases. Understanding the specific functions of these EVs during H. pylori infections, whether are advantageous to the host or the pathogen, may help the development new therapeutic approaches to prevent disease.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.