ELLIPSIS: Robust quantification of splicing in scRNA-seq.

Marie Van Hecke, Niko Beerenwinkel, Thibault Lootens, Jan Fostier, Robrecht Raedt, Kathleen Marchal
{"title":"ELLIPSIS: Robust quantification of splicing in scRNA-seq.","authors":"Marie Van Hecke, Niko Beerenwinkel, Thibault Lootens, Jan Fostier, Robrecht Raedt, Kathleen Marchal","doi":"10.1093/bioinformatics/btaf028","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Alternative splicing is a tightly regulated biological process, that due to its cell type specific behaviour, calls for analysis at the single cell level. However, quantifying differential splicing in scRNA-seq is challenging due to low and uneven coverage. Hereto, we developed ELLIPSIS, a tool for robust quantification of splicing in scRNA-seq that leverages locally observed read coverage with conservation of flow and intra-cell type similarity properties. Additionally, it is also able to quantify splicing in novel splicing events, which is extremely important in cancer cells where lots of novel splicing events occur.</p><p><strong>Results: </strong>Application of ELLIPSIS to simulated data, proves that our method is able to robustly estimate Percent Spliced In values in simulated data, and allows to reliably detect differential splicing between cell types. Using ELLIPSIS on glioblastoma scRNA-seq data, we identified genes that are differentially spliced between cancer cells in the tumor core and infiltrating cancer cells found in peripheral tissue. These genes showed to play a role in a.o. cell migration and motility, cell projection organization and neuron projection guidance.</p><p><strong>Availability and implementation: </strong>ELLIPSIS quantification tool: https://github.com/MarchalLab/ELLIPSIS.git.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Alternative splicing is a tightly regulated biological process, that due to its cell type specific behaviour, calls for analysis at the single cell level. However, quantifying differential splicing in scRNA-seq is challenging due to low and uneven coverage. Hereto, we developed ELLIPSIS, a tool for robust quantification of splicing in scRNA-seq that leverages locally observed read coverage with conservation of flow and intra-cell type similarity properties. Additionally, it is also able to quantify splicing in novel splicing events, which is extremely important in cancer cells where lots of novel splicing events occur.

Results: Application of ELLIPSIS to simulated data, proves that our method is able to robustly estimate Percent Spliced In values in simulated data, and allows to reliably detect differential splicing between cell types. Using ELLIPSIS on glioblastoma scRNA-seq data, we identified genes that are differentially spliced between cancer cells in the tumor core and infiltrating cancer cells found in peripheral tissue. These genes showed to play a role in a.o. cell migration and motility, cell projection organization and neuron projection guidance.

Availability and implementation: ELLIPSIS quantification tool: https://github.com/MarchalLab/ELLIPSIS.git.

Supplementary information: Supplementary data are available at Bioinformatics online.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信