Advanced technologies for reducing greenhouse gas emissions from rice fields: Is hybrid rice the game changer?

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Communications Pub Date : 2025-02-10 Epub Date: 2024-12-28 DOI:10.1016/j.xplc.2024.101224
Seyed Mahdi Hosseiniyan Khatibi, Maria Arlene Adviento-Borbe, Niña Gracel Dimaano, Ando M Radanielson, Jauhar Ali
{"title":"Advanced technologies for reducing greenhouse gas emissions from rice fields: Is hybrid rice the game changer?","authors":"Seyed Mahdi Hosseiniyan Khatibi, Maria Arlene Adviento-Borbe, Niña Gracel Dimaano, Ando M Radanielson, Jauhar Ali","doi":"10.1016/j.xplc.2024.101224","DOIUrl":null,"url":null,"abstract":"<p><p>Rice is a staple food for half of the world's population and the largest source of greenhouse gas (GHG) from the agricultural sector, responsible for approximately 48% of GHG emissions from croplands. With the rapid growth of the human population, the increasing pressure on rice systems for extensive and intensive farming is associated with an increase in GHG emissions that is impeding global efforts to mitigate climate change. The complex rice environment, with its genotypic variability among rice cultivars, as well as emerging farming practices and global climatic changes, are important challenges for research and development initiatives that aim to lower GHG emissions and increase crop productivity. A combination of approaches will likely be needed to effectively improve the resilience of modern rice farming. These will include a better understanding of the major drivers of emissions, different cropping practices to control the magnitude of emissions, and high yield performance through systems-level studies. The use of rice hybrids may give farmers an additive advantage, as hybrids may be better able to resist environmental stress than inbred varieties. Recent progress in the development and dissemination of hybrid rice has demonstrated a shift in the carbon footprint of rice production and is likely to lead the way in transforming rice systems to reduce GHG emissions. The application of innovative technologies such as high-throughput sequencing, gene editing, and AI can accelerate our understanding of the underlying mechanisms and critical drivers of GHG emissions from rice fields. We highlight advanced practical approaches to rice breeding and production that can support the increasing contribution of hybrid rice to global food and nutritional security while ensuring a sustainable and healthy planet.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":"6 2","pages":"101224"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2024.101224","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rice is a staple food for half of the world's population and the largest source of greenhouse gas (GHG) from the agricultural sector, responsible for approximately 48% of GHG emissions from croplands. With the rapid growth of the human population, the increasing pressure on rice systems for extensive and intensive farming is associated with an increase in GHG emissions that is impeding global efforts to mitigate climate change. The complex rice environment, with its genotypic variability among rice cultivars, as well as emerging farming practices and global climatic changes, are important challenges for research and development initiatives that aim to lower GHG emissions and increase crop productivity. A combination of approaches will likely be needed to effectively improve the resilience of modern rice farming. These will include a better understanding of the major drivers of emissions, different cropping practices to control the magnitude of emissions, and high yield performance through systems-level studies. The use of rice hybrids may give farmers an additive advantage, as hybrids may be better able to resist environmental stress than inbred varieties. Recent progress in the development and dissemination of hybrid rice has demonstrated a shift in the carbon footprint of rice production and is likely to lead the way in transforming rice systems to reduce GHG emissions. The application of innovative technologies such as high-throughput sequencing, gene editing, and AI can accelerate our understanding of the underlying mechanisms and critical drivers of GHG emissions from rice fields. We highlight advanced practical approaches to rice breeding and production that can support the increasing contribution of hybrid rice to global food and nutritional security while ensuring a sustainable and healthy planet.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Communications
Plant Communications Agricultural and Biological Sciences-Plant Science
CiteScore
15.70
自引率
5.70%
发文量
105
审稿时长
6 weeks
期刊介绍: Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信