Socially interactive industrial robots: a PAD model of flow for emotional co-regulation.

IF 2.9 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-01-28 eCollection Date: 2024-01-01 DOI:10.3389/frobt.2024.1418677
Fabrizio Nunnari, Dimitra Tsovaltzi, Matteo Lavit Nicora, Sebastian Beyrodt, Pooja Prajod, Lara Chehayeb, Ingrid Brdar, Antonella Delle Fave, Luca Negri, Elisabeth André, Patrick Gebhard, Matteo Malosio
{"title":"Socially interactive industrial robots: a PAD model of flow for emotional co-regulation.","authors":"Fabrizio Nunnari, Dimitra Tsovaltzi, Matteo Lavit Nicora, Sebastian Beyrodt, Pooja Prajod, Lara Chehayeb, Ingrid Brdar, Antonella Delle Fave, Luca Negri, Elisabeth André, Patrick Gebhard, Matteo Malosio","doi":"10.3389/frobt.2024.1418677","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents the development of a socially interactive industrial robot. An Avatar is used to embody a cobot for collaborative industrial assembly tasks. The embodied covatar (cobot plus its avatar) is introduced to support Flow experiences through co-regulation, interactive emotion regulation guidance. A real-time continuous emotional modeling method and an aligned transparent behavioral model, BASSF (Boredom, Anxiety, Self-efficacy, Self-compassion, Flow) is developed. The BASSF model anticipates and co-regulates counterproductive emotional experiences of operators working under stress with cobots on tedious industrial tasks. The targeted Flow experience is represented in the three-dimensional Pleasure, Arousal, and Dominance (PAD) space. We present how, despite their noisy nature, PAD signals can be used to drive the BASSF model with its theory-based interventions. The empirical results and analysis provides empirical support for the theoretically defined model, and clearly points to the need for data pre-filtering and per-user calibration. The proposed post-processing method helps quantify the parameters needed to control the frequency of intervention of the agent; still leaving the experimenter with a run-time adjustable global control of its sensitivity. A controlled empirical study (Study 1, N = 20), tested the model's main theoretical assumptions about Flow, Dominance, Self-Efficacy, and boredom, to legitimate its implementation in this context. Participants worked on a task for an hour, assembling pieces in collaboration with the covatar. After the task, participants completed questionnaires on Flow, their affective experience, and Self-Efficacy, and they were interviewed to understand their emotions and regulation during the task. The results from Study 1 suggest that the Dominance dimension plays a vital role in task-related settings as it predicts the participants' Self-Efficacy and Flow. However, the relationship between Flow, pleasure, and arousal requires further investigation. Qualitative interview analysis revealed that participants regulated negative emotions, like boredom, also without support, but some strategies could negatively impact wellbeing and productivity, which aligns with theory. Additional results from a first evaluation of the overall system (Study 2, N = 12) align with these findings and provide support for the use of socially interactive industrial robots to support wellbeing, job satisfaction, and involvement, while reducing unproductive emotional experiences and their regulation.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"11 ","pages":"1418677"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1418677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the development of a socially interactive industrial robot. An Avatar is used to embody a cobot for collaborative industrial assembly tasks. The embodied covatar (cobot plus its avatar) is introduced to support Flow experiences through co-regulation, interactive emotion regulation guidance. A real-time continuous emotional modeling method and an aligned transparent behavioral model, BASSF (Boredom, Anxiety, Self-efficacy, Self-compassion, Flow) is developed. The BASSF model anticipates and co-regulates counterproductive emotional experiences of operators working under stress with cobots on tedious industrial tasks. The targeted Flow experience is represented in the three-dimensional Pleasure, Arousal, and Dominance (PAD) space. We present how, despite their noisy nature, PAD signals can be used to drive the BASSF model with its theory-based interventions. The empirical results and analysis provides empirical support for the theoretically defined model, and clearly points to the need for data pre-filtering and per-user calibration. The proposed post-processing method helps quantify the parameters needed to control the frequency of intervention of the agent; still leaving the experimenter with a run-time adjustable global control of its sensitivity. A controlled empirical study (Study 1, N = 20), tested the model's main theoretical assumptions about Flow, Dominance, Self-Efficacy, and boredom, to legitimate its implementation in this context. Participants worked on a task for an hour, assembling pieces in collaboration with the covatar. After the task, participants completed questionnaires on Flow, their affective experience, and Self-Efficacy, and they were interviewed to understand their emotions and regulation during the task. The results from Study 1 suggest that the Dominance dimension plays a vital role in task-related settings as it predicts the participants' Self-Efficacy and Flow. However, the relationship between Flow, pleasure, and arousal requires further investigation. Qualitative interview analysis revealed that participants regulated negative emotions, like boredom, also without support, but some strategies could negatively impact wellbeing and productivity, which aligns with theory. Additional results from a first evaluation of the overall system (Study 2, N = 12) align with these findings and provide support for the use of socially interactive industrial robots to support wellbeing, job satisfaction, and involvement, while reducing unproductive emotional experiences and their regulation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信