Advanced sleep disorder detection using multi-layered ensemble learning and advanced data balancing techniques.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-01-28 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1506770
Muhammad Mostafa Monowar, S M Nuruzzaman Nobel, Maharin Afroj, Md Abdul Hamid, Md Zia Uddin, Md Mohsin Kabir, M F Mridha
{"title":"Advanced sleep disorder detection using multi-layered ensemble learning and advanced data balancing techniques.","authors":"Muhammad Mostafa Monowar, S M Nuruzzaman Nobel, Maharin Afroj, Md Abdul Hamid, Md Zia Uddin, Md Mohsin Kabir, M F Mridha","doi":"10.3389/frai.2024.1506770","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep disorder detection has greatly improved with the integration of machine learning, offering enhanced accuracy and effectiveness. However, the labor-intensive nature of diagnosis still presents challenges. To address these, we propose a novel coordination model aimed at improving detection accuracy and reliability through a multi-model ensemble approach. The proposed method employs a multi-layered ensemble model, starting with the careful selection of N models to capture essential features. Techniques such as thresholding, predictive scoring, and the conversion of Softmax labels into multidimensional feature vectors improve interpretability. Ensemble methods like voting and stacking are used to ensure collaborative decision-making across models. Both the original dataset and one modified using the Synthetic Minority Oversampling Technique (SMOTE) were evaluated to address data imbalance issues. The ensemble model demonstrated superior performance, achieving 96.88% accuracy on the SMOTE-implemented dataset and 95.75% accuracy on the original dataset. Moreover, an eight-fold cross-validation yielded an impressive 99.5% accuracy, indicating the reliability of the model in handling unbalanced data and ensuring precise detection of sleep disorders. Compared to individual models, the proposed ensemble method significantly outperformed traditional models. The combination of models not only enhanced accuracy but also improved the system's ability to handle unbalanced data, a common limitation in traditional methods. This study marks a significant advancement in sleep disorder detection through the integration of innovative ensemble techniques. The proposed approach, combining multiple models and advanced interpretability methods, promises improved patient outcomes and greater diagnostic accuracy, paving the way for future applications in medical diagnostics.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1506770"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811781/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1506770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Sleep disorder detection has greatly improved with the integration of machine learning, offering enhanced accuracy and effectiveness. However, the labor-intensive nature of diagnosis still presents challenges. To address these, we propose a novel coordination model aimed at improving detection accuracy and reliability through a multi-model ensemble approach. The proposed method employs a multi-layered ensemble model, starting with the careful selection of N models to capture essential features. Techniques such as thresholding, predictive scoring, and the conversion of Softmax labels into multidimensional feature vectors improve interpretability. Ensemble methods like voting and stacking are used to ensure collaborative decision-making across models. Both the original dataset and one modified using the Synthetic Minority Oversampling Technique (SMOTE) were evaluated to address data imbalance issues. The ensemble model demonstrated superior performance, achieving 96.88% accuracy on the SMOTE-implemented dataset and 95.75% accuracy on the original dataset. Moreover, an eight-fold cross-validation yielded an impressive 99.5% accuracy, indicating the reliability of the model in handling unbalanced data and ensuring precise detection of sleep disorders. Compared to individual models, the proposed ensemble method significantly outperformed traditional models. The combination of models not only enhanced accuracy but also improved the system's ability to handle unbalanced data, a common limitation in traditional methods. This study marks a significant advancement in sleep disorder detection through the integration of innovative ensemble techniques. The proposed approach, combining multiple models and advanced interpretability methods, promises improved patient outcomes and greater diagnostic accuracy, paving the way for future applications in medical diagnostics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信