Hybrid attention-CNN model for classification of gait abnormalities using EMG scalogram images.

Q3 Engineering
Pranshu C B S Negi, S S Pandey, Shiru Sharma, Neeraj Sharma
{"title":"Hybrid attention-CNN model for classification of gait abnormalities using EMG scalogram images.","authors":"Pranshu C B S Negi, S S Pandey, Shiru Sharma, Neeraj Sharma","doi":"10.1080/03091902.2025.2462310","DOIUrl":null,"url":null,"abstract":"<p><p>This research aimed to develop an algorithm for classifying scalogram images generated from electromyography data of patients with Rheumatoid Arthritis and Prolapsed Intervertebral Disc. Electromyography is valuable for assessing muscle function and diagnosing neurological disorders, but limitations, such as background noise, cross-talk, and inter-subject variability complicate the interpretation and assessment. To mitigate this, the present study uses scalogram images and attention-network architecture. The algorithm utilises a combination of features extracted from an attention module and a convolution feature module, followed by classification using a Convolutional Neural Network classifier. A comparison of eight alternative architectures, including individual implementations of attention and convolution filters and a Convolutional Neural Network-only model, shows that the hybrid Convolutional Neural Network model proposed in this study outperforms the others. The model exhibits excellent discriminatory ability between gait abnormalities with an accuracy of 96.7%, a precision of 95.2%, a recall of 94.8%, and an Area Under Curve of 0.99. These findings suggest that the proposed model is highly accurate in classifying scalogram images of electromyography signals and may have significant clinical implications for early diagnosis and treatment planning.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2025.2462310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This research aimed to develop an algorithm for classifying scalogram images generated from electromyography data of patients with Rheumatoid Arthritis and Prolapsed Intervertebral Disc. Electromyography is valuable for assessing muscle function and diagnosing neurological disorders, but limitations, such as background noise, cross-talk, and inter-subject variability complicate the interpretation and assessment. To mitigate this, the present study uses scalogram images and attention-network architecture. The algorithm utilises a combination of features extracted from an attention module and a convolution feature module, followed by classification using a Convolutional Neural Network classifier. A comparison of eight alternative architectures, including individual implementations of attention and convolution filters and a Convolutional Neural Network-only model, shows that the hybrid Convolutional Neural Network model proposed in this study outperforms the others. The model exhibits excellent discriminatory ability between gait abnormalities with an accuracy of 96.7%, a precision of 95.2%, a recall of 94.8%, and an Area Under Curve of 0.99. These findings suggest that the proposed model is highly accurate in classifying scalogram images of electromyography signals and may have significant clinical implications for early diagnosis and treatment planning.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信