Hybrid attention-CNN model for classification of gait abnormalities using EMG scalogram images.

Q3 Engineering
Pranshu C B S Negi, S S Pandey, Shiru Sharma, Neeraj Sharma
{"title":"Hybrid attention-CNN model for classification of gait abnormalities using EMG scalogram images.","authors":"Pranshu C B S Negi, S S Pandey, Shiru Sharma, Neeraj Sharma","doi":"10.1080/03091902.2025.2462310","DOIUrl":null,"url":null,"abstract":"<p><p>This research aimed to develop an algorithm for classifying scalogram images generated from electromyography data of patients with Rheumatoid Arthritis and Prolapsed Intervertebral Disc. Electromyography is valuable for assessing muscle function and diagnosing neurological disorders, but limitations, such as background noise, cross-talk, and inter-subject variability complicate the interpretation and assessment. To mitigate this, the present study uses scalogram images and attention-network architecture. The algorithm utilises a combination of features extracted from an attention module and a convolution feature module, followed by classification using a Convolutional Neural Network classifier. A comparison of eight alternative architectures, including individual implementations of attention and convolution filters and a Convolutional Neural Network-only model, shows that the hybrid Convolutional Neural Network model proposed in this study outperforms the others. The model exhibits excellent discriminatory ability between gait abnormalities with an accuracy of 96.7%, a precision of 95.2%, a recall of 94.8%, and an Area Under Curve of 0.99. These findings suggest that the proposed model is highly accurate in classifying scalogram images of electromyography signals and may have significant clinical implications for early diagnosis and treatment planning.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"239-252"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2025.2462310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This research aimed to develop an algorithm for classifying scalogram images generated from electromyography data of patients with Rheumatoid Arthritis and Prolapsed Intervertebral Disc. Electromyography is valuable for assessing muscle function and diagnosing neurological disorders, but limitations, such as background noise, cross-talk, and inter-subject variability complicate the interpretation and assessment. To mitigate this, the present study uses scalogram images and attention-network architecture. The algorithm utilises a combination of features extracted from an attention module and a convolution feature module, followed by classification using a Convolutional Neural Network classifier. A comparison of eight alternative architectures, including individual implementations of attention and convolution filters and a Convolutional Neural Network-only model, shows that the hybrid Convolutional Neural Network model proposed in this study outperforms the others. The model exhibits excellent discriminatory ability between gait abnormalities with an accuracy of 96.7%, a precision of 95.2%, a recall of 94.8%, and an Area Under Curve of 0.99. These findings suggest that the proposed model is highly accurate in classifying scalogram images of electromyography signals and may have significant clinical implications for early diagnosis and treatment planning.

使用肌电图对步态异常进行分类的注意- cnn混合模型。
本研究旨在开发一种算法,用于对类风湿性关节炎和椎间盘突出症患者的肌电图数据生成的尺度图图像进行分类。肌电图在评估肌肉功能和诊断神经系统疾病方面很有价值,但其局限性,如背景噪声、串扰和主体间变异性使其解释和评估复杂化。为了减轻这种影响,本研究使用了尺度图图像和注意网络结构。该算法结合了从注意力模块和卷积特征模块中提取的特征,然后使用卷积神经网络分类器进行分类。通过对八种可选架构(包括单独实现的注意力和卷积滤波器以及仅卷积神经网络模型)的比较,表明本研究提出的混合卷积神经网络模型优于其他模型。该模型具有良好的步态异常判别能力,准确率为96.7%,精密度为95.2%,召回率为94.8%,曲线下面积为0.99。这些发现表明,所提出的模型在肌电信号的尺度图图像分类方面具有很高的准确性,可能对早期诊断和治疗计划具有重要的临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信