Toxicological mode-of-action and developmental toxicity of different carbon chain length PFAS

IF 2.9 3区 医学 Q2 TOXICOLOGY
Kamlesh Sodani , Bas Ter Braak , Sabine Hartvelt , Mark Boelens , Amer Jamalpoor , Sandeep Mukhi
{"title":"Toxicological mode-of-action and developmental toxicity of different carbon chain length PFAS","authors":"Kamlesh Sodani ,&nbsp;Bas Ter Braak ,&nbsp;Sabine Hartvelt ,&nbsp;Mark Boelens ,&nbsp;Amer Jamalpoor ,&nbsp;Sandeep Mukhi","doi":"10.1016/j.toxlet.2025.02.003","DOIUrl":null,"url":null,"abstract":"<div><div>Per-and polyfluoro alkyl substances (PFAS), also known as “forever chemicals”, are deemed as highly toxic with similar toxicological mode-of-action (MoA) and potency. However, varying carbon chain length and functional head-group of PFAS can affect their physicochemical properties, resulting in different toxicological properties. To assess PFAS toxicological MoA and to distinguish between high toxic PFAS and the low-toxic analogs, we tested a set of eight PFAS with varying carbon chain length (C2-C10) in the ToxProfiler assay. ToxProfiler is a human <em>in vitro</em> assay containing seven fluorescent reporters to visualize and quantify activation of the major cellular stress pathways: oxidative stress, cell cycle stress, endoplasmic reticulum (ER) stress, autophagy, ion stress, protein stress and inflammation. In addition, we evaluated teratogenicity potential of long-chain PFAS perfluorooctanoic acid (PFOA; C8), and the ultrashort-chain PFAS trifluoroacetic acid (TFA; C2) in ReproTracker, a human induced pluripotent stem cell (hiPSCs)-based assay in which differentiation into cardiomyocytes, hepatocytes, and neural rosettes is followed to identify developmental toxicity hazards of new drugs and chemicals. In this study, we identified long-chain PFAS (C8-C10), such as PFOA (C8) to be more cytotoxic than ultrashort-chain PFAS and to predominantly induce ER and oxidative stress at 130 µM. PFAS with a carbon chain length of C4-C7 primarily induced autophagy (300 µM) in ToxProfiler. Ultrashort-chain PFAS trifluoroacetic acid (TFA; C2) and perfluoropropionic acid (PFPrA; C3) did not activate any of the ToxProfiler stress response reporters and were not cytotoxic at their maximum tested concentrations (10 mM). In concordance, exposure of differentiating cells to PFOA in ReproTracker led to a concentration-dependent decrease in the hepatocyte-specific and neuroectodermal biomarker genes and disrupted their morphology at 30 and 60 µM, respectively. TFA had no significant effect on biomarker expression, nor on the morphology/functionality of the three differentiated cells. Altogether, we demonstrated that the carbon chain length of PFAS can determine their <em>in vitro</em> toxicity and ultrashort-chain PFAS (TFA) were found to be less toxic when compared to long-chain PFAS.</div></div>","PeriodicalId":23206,"journal":{"name":"Toxicology letters","volume":"405 ","pages":"Pages 59-66"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378427425000268","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Per-and polyfluoro alkyl substances (PFAS), also known as “forever chemicals”, are deemed as highly toxic with similar toxicological mode-of-action (MoA) and potency. However, varying carbon chain length and functional head-group of PFAS can affect their physicochemical properties, resulting in different toxicological properties. To assess PFAS toxicological MoA and to distinguish between high toxic PFAS and the low-toxic analogs, we tested a set of eight PFAS with varying carbon chain length (C2-C10) in the ToxProfiler assay. ToxProfiler is a human in vitro assay containing seven fluorescent reporters to visualize and quantify activation of the major cellular stress pathways: oxidative stress, cell cycle stress, endoplasmic reticulum (ER) stress, autophagy, ion stress, protein stress and inflammation. In addition, we evaluated teratogenicity potential of long-chain PFAS perfluorooctanoic acid (PFOA; C8), and the ultrashort-chain PFAS trifluoroacetic acid (TFA; C2) in ReproTracker, a human induced pluripotent stem cell (hiPSCs)-based assay in which differentiation into cardiomyocytes, hepatocytes, and neural rosettes is followed to identify developmental toxicity hazards of new drugs and chemicals. In this study, we identified long-chain PFAS (C8-C10), such as PFOA (C8) to be more cytotoxic than ultrashort-chain PFAS and to predominantly induce ER and oxidative stress at 130 µM. PFAS with a carbon chain length of C4-C7 primarily induced autophagy (300 µM) in ToxProfiler. Ultrashort-chain PFAS trifluoroacetic acid (TFA; C2) and perfluoropropionic acid (PFPrA; C3) did not activate any of the ToxProfiler stress response reporters and were not cytotoxic at their maximum tested concentrations (10 mM). In concordance, exposure of differentiating cells to PFOA in ReproTracker led to a concentration-dependent decrease in the hepatocyte-specific and neuroectodermal biomarker genes and disrupted their morphology at 30 and 60 µM, respectively. TFA had no significant effect on biomarker expression, nor on the morphology/functionality of the three differentiated cells. Altogether, we demonstrated that the carbon chain length of PFAS can determine their in vitro toxicity and ultrashort-chain PFAS (TFA) were found to be less toxic when compared to long-chain PFAS.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicology letters
Toxicology letters 医学-毒理学
CiteScore
7.10
自引率
2.90%
发文量
897
审稿时长
33 days
期刊介绍: An international journal for the rapid publication of novel reports on a range of aspects of toxicology, especially mechanisms of toxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信