{"title":"Cytoplasmic incompatibility factor proteins from <i>Wolbachia</i> prophage are costly to sperm development in <i>Drosophila melanogaster</i>.","authors":"Rupinder Kaur, Seth R Bordenstein","doi":"10.1098/rspb.2024.3016","DOIUrl":null,"url":null,"abstract":"<p><p>The symbiosis between arthropods and <i>Wolbachia</i> bacteria is globally widespread, largely due to selfish-drive systems that favour the fitness of symbiont-transmitting females. The most common drive, cytoplasmic incompatibility (CI), is central to arboviral control efforts. In <i>Drosophila melanogaster</i> carrying <i>w</i>Mel <i>Wolbachia</i> deployed in mosquito control, two prophage genes in <i>Wolbachia, cifA</i> and <i>cifB</i>, cause CI that results in a paternal-effect lethality of embryos in crosses between <i>Wolbachia</i>-bearing males and aposymbiotic females. While the CI mechanism by which Cif proteins alter sperm development has recently been elucidated in <i>D. melanogaster</i> and <i>Aedes aegypti</i> mosquitoes, the Cifs' extended impact on male reproductive fitness such as sperm morphology and quantity remains unclear. Here, using cytochemical, microscopic and transgenic assays in <i>D. melanogaster,</i> we demonstrate that both CifA and CifB cause a significant portion of defects in elongating spermatids, culminating in malformed mature sperm nuclei. Males expressing Cifs have reduced spermatid bundles and sperm counts, and transgenic expression of Cifs can occasionally result in no mature sperm formation. We reflect on Cifs' varied functional impacts on the Host Modification model of CI as well as host evolution, behaviour and vector control strategies.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2040","pages":"20243016"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.3016","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The symbiosis between arthropods and Wolbachia bacteria is globally widespread, largely due to selfish-drive systems that favour the fitness of symbiont-transmitting females. The most common drive, cytoplasmic incompatibility (CI), is central to arboviral control efforts. In Drosophila melanogaster carrying wMel Wolbachia deployed in mosquito control, two prophage genes in Wolbachia, cifA and cifB, cause CI that results in a paternal-effect lethality of embryos in crosses between Wolbachia-bearing males and aposymbiotic females. While the CI mechanism by which Cif proteins alter sperm development has recently been elucidated in D. melanogaster and Aedes aegypti mosquitoes, the Cifs' extended impact on male reproductive fitness such as sperm morphology and quantity remains unclear. Here, using cytochemical, microscopic and transgenic assays in D. melanogaster, we demonstrate that both CifA and CifB cause a significant portion of defects in elongating spermatids, culminating in malformed mature sperm nuclei. Males expressing Cifs have reduced spermatid bundles and sperm counts, and transgenic expression of Cifs can occasionally result in no mature sperm formation. We reflect on Cifs' varied functional impacts on the Host Modification model of CI as well as host evolution, behaviour and vector control strategies.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.