Plus-strand RNA viruses hijack Musashi homolog 1 to shield viral RNA from cytoplasmic ribonuclease degradation.

IF 4 2区 医学 Q2 VIROLOGY
Defang Zhou, Menglu Xu, Qingjie Liu, Ruixue Xin, Gege Cui, Longying Ding, Xiaoyang Liu, Xinyue Zhang, Tianxing Yan, Jing Zhou, Shuhai He, Liangyu Yang, Bin Xiang, Ziqiang Cheng
{"title":"Plus-strand RNA viruses hijack Musashi homolog 1 to shield viral RNA from cytoplasmic ribonuclease degradation.","authors":"Defang Zhou, Menglu Xu, Qingjie Liu, Ruixue Xin, Gege Cui, Longying Ding, Xiaoyang Liu, Xinyue Zhang, Tianxing Yan, Jing Zhou, Shuhai He, Liangyu Yang, Bin Xiang, Ziqiang Cheng","doi":"10.1128/jvi.00023-25","DOIUrl":null,"url":null,"abstract":"<p><p>A successful strategy employed by RNA viruses to achieve replication is to evade host cell RNase degradation. However, the mechanisms through which plus-strand RNA viruses effectively shield viral RNA from cellular ribonuclease degradation remain unclear. In this study, we identified the phenomenon whereby plus-strand RNA viruses, including avian leukosis virus subgroup J (ALV-J), reticuloendotheliosis virus (REV), chicken astrovirus (CAstV), and porcine epidemic diarrhea virus (PEDV), hijacked host cellular Musashi homolog 1 (MSI1). These viruses upregulated MSI1 expression and facilitated its translocation from the cytoplasmic periphery to a position proximal to and within the nucleus, thereby protecting viral RNA from degradation. Mechanistic analyses revealed that these viruses use distinct regions, the unique (U3) region or three prime untranslated region (3'UTR), to engage with MSI1, consequently shielding their viral RNA from cytoplasmic ribonuclease degradation. These results offer significant implications for understanding the replication tactics used by plus-strand RNA viruses, thereby advancing our understanding of their biological behaviors.IMPORTANCEThe intricate interplay between RNA viruses and host cell RNA regulation encompasses viral mechanisms designed to circumvent RNase-mediated degradation. However, the specific strategies employed by plus-strand RNA viruses to shield their RNA from host ribonucleases remain inadequately characterized. In this study, Musashi homolog 1 (MSI1) is predominantly localized in the cytoplasm of normal cells, distinct from the nucleus. Following infection by plus-strand RNA viruses such as avian leukosis virus subgroup J (ALV-J), reticuloendotheliosis virus (REV), chicken astrovirus (CAstV), and porcine epidemic diarrhea virus (PEDV), these viruses hijack MSI1 to relocate near and within the nucleus. This hijacking is facilitated by specific regions, including unique or three prime untranslated regions, thereby preventing viral RNA from degradation by cytoplasmic ribonucleases. These findings have significant implications for elucidating the replication strategies of plus-strand RNA viruses, thereby advancing our understanding of their biological mechanisms.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0002325"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.00023-25","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A successful strategy employed by RNA viruses to achieve replication is to evade host cell RNase degradation. However, the mechanisms through which plus-strand RNA viruses effectively shield viral RNA from cellular ribonuclease degradation remain unclear. In this study, we identified the phenomenon whereby plus-strand RNA viruses, including avian leukosis virus subgroup J (ALV-J), reticuloendotheliosis virus (REV), chicken astrovirus (CAstV), and porcine epidemic diarrhea virus (PEDV), hijacked host cellular Musashi homolog 1 (MSI1). These viruses upregulated MSI1 expression and facilitated its translocation from the cytoplasmic periphery to a position proximal to and within the nucleus, thereby protecting viral RNA from degradation. Mechanistic analyses revealed that these viruses use distinct regions, the unique (U3) region or three prime untranslated region (3'UTR), to engage with MSI1, consequently shielding their viral RNA from cytoplasmic ribonuclease degradation. These results offer significant implications for understanding the replication tactics used by plus-strand RNA viruses, thereby advancing our understanding of their biological behaviors.IMPORTANCEThe intricate interplay between RNA viruses and host cell RNA regulation encompasses viral mechanisms designed to circumvent RNase-mediated degradation. However, the specific strategies employed by plus-strand RNA viruses to shield their RNA from host ribonucleases remain inadequately characterized. In this study, Musashi homolog 1 (MSI1) is predominantly localized in the cytoplasm of normal cells, distinct from the nucleus. Following infection by plus-strand RNA viruses such as avian leukosis virus subgroup J (ALV-J), reticuloendotheliosis virus (REV), chicken astrovirus (CAstV), and porcine epidemic diarrhea virus (PEDV), these viruses hijack MSI1 to relocate near and within the nucleus. This hijacking is facilitated by specific regions, including unique or three prime untranslated regions, thereby preventing viral RNA from degradation by cytoplasmic ribonucleases. These findings have significant implications for elucidating the replication strategies of plus-strand RNA viruses, thereby advancing our understanding of their biological mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信