Modulator of VRAC Current 1 Is a Potential Target Antigen in Multiple Sclerosis.

IF 7.8 1区 医学 Q1 CLINICAL NEUROLOGY
Johannes Raffael Dahl, Alicia Weier, Christopher Winter, Maik Hintze, Veit Rothhammer, Thanos Tsaktanis, Anne-Katrin Proebstel, Tradite Neziraj, Elisabeth Poessnecker, Johanna Oechtering, Jens Kuhle, Boris-Alexander Kallmann, Gabriele Luber, Thorsten Heider, Luisa Klotz, Rittika Chunder, Stefanie Kuerten
{"title":"Modulator of VRAC Current 1 Is a Potential Target Antigen in Multiple Sclerosis.","authors":"Johannes Raffael Dahl, Alicia Weier, Christopher Winter, Maik Hintze, Veit Rothhammer, Thanos Tsaktanis, Anne-Katrin Proebstel, Tradite Neziraj, Elisabeth Poessnecker, Johanna Oechtering, Jens Kuhle, Boris-Alexander Kallmann, Gabriele Luber, Thorsten Heider, Luisa Klotz, Rittika Chunder, Stefanie Kuerten","doi":"10.1212/NXI.0000000000200374","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Multiple sclerosis (MS) is a chronic immune-mediated demyelinating disease of the CNS. Highlighted by the success of B-cell-depleting therapies such as the monoclonal anti-CD20 antibodies rituximab, ocrelizumab, and ofatumumab, B cells have been shown to play a central role in the immunopathology of the disease. Yet, the target antigens of the pathogenic B-cell response in MS remain unclear.</p><p><strong>Methods: </strong>We combined polyclonal B-cell stimulation of peripheral blood mononuclear cells with a human proteome-wide protein microarray to identify target antigens of MS by comparing samples from 20 patients with MS with 9 age-matched and sex-matched healthy controls. Results were verified by enzyme-linked immunosorbent assay (ELISA) in 3 independent validation cohorts (N = 47 patients with MS in remission; N = 20 patients with MS during relapse; N = 25 HCs; N = 30 patients with other noninflammatory neurologic diseases; N = 9 patients with other inflammatory neurologic diseases). Experimental autoimmune encephalomyelitis (EAE) was used as an animal model to evaluate the pathogenicity of the antibodies of choice.</p><p><strong>Results: </strong>Our results corroborate the existing concept of a highly diverse autoimmune response in MS. Yet, a significantly elevated antibody response against the membrane protein modulator of VRAC current 1 (MLC1) was noted in B-cell culture supernatants and serum samples of patients with MS. Furthermore, significantly elevated titers to MLC1 were observed in the CSF of patients with neuroinflammatory diseases other than MS. Neurons and astrocytes were identified as the main cell types expressing MLC1 in the brain of a patient with MS. Injection of anti-MLC1 antibodies into mice with EAE led to strong in vivo binding to cerebral cortical neurons and to the death of 4 of the 7 injected mice.</p><p><strong>Discussion: </strong>Future studies will have to address the diagnostic and prognostic value of MLC1-specific antibodies in neuroinflammatory disorders such as MS and characterize the functional role of MLC1 expression in neurons and astrocytes.</p><p><strong>Trial registration information: </strong>The study has been registered in the German Clinical Trials Register (study number DRKS00015528).</p>","PeriodicalId":19472,"journal":{"name":"Neurology® Neuroimmunology & Neuroinflammation","volume":"12 2","pages":"e200374"},"PeriodicalIF":7.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology® Neuroimmunology & Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1212/NXI.0000000000200374","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives: Multiple sclerosis (MS) is a chronic immune-mediated demyelinating disease of the CNS. Highlighted by the success of B-cell-depleting therapies such as the monoclonal anti-CD20 antibodies rituximab, ocrelizumab, and ofatumumab, B cells have been shown to play a central role in the immunopathology of the disease. Yet, the target antigens of the pathogenic B-cell response in MS remain unclear.

Methods: We combined polyclonal B-cell stimulation of peripheral blood mononuclear cells with a human proteome-wide protein microarray to identify target antigens of MS by comparing samples from 20 patients with MS with 9 age-matched and sex-matched healthy controls. Results were verified by enzyme-linked immunosorbent assay (ELISA) in 3 independent validation cohorts (N = 47 patients with MS in remission; N = 20 patients with MS during relapse; N = 25 HCs; N = 30 patients with other noninflammatory neurologic diseases; N = 9 patients with other inflammatory neurologic diseases). Experimental autoimmune encephalomyelitis (EAE) was used as an animal model to evaluate the pathogenicity of the antibodies of choice.

Results: Our results corroborate the existing concept of a highly diverse autoimmune response in MS. Yet, a significantly elevated antibody response against the membrane protein modulator of VRAC current 1 (MLC1) was noted in B-cell culture supernatants and serum samples of patients with MS. Furthermore, significantly elevated titers to MLC1 were observed in the CSF of patients with neuroinflammatory diseases other than MS. Neurons and astrocytes were identified as the main cell types expressing MLC1 in the brain of a patient with MS. Injection of anti-MLC1 antibodies into mice with EAE led to strong in vivo binding to cerebral cortical neurons and to the death of 4 of the 7 injected mice.

Discussion: Future studies will have to address the diagnostic and prognostic value of MLC1-specific antibodies in neuroinflammatory disorders such as MS and characterize the functional role of MLC1 expression in neurons and astrocytes.

Trial registration information: The study has been registered in the German Clinical Trials Register (study number DRKS00015528).

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.60
自引率
2.30%
发文量
219
审稿时长
8 weeks
期刊介绍: Neurology Neuroimmunology & Neuroinflammation is an official journal of the American Academy of Neurology. Neurology: Neuroimmunology & Neuroinflammation will be the premier peer-reviewed journal in neuroimmunology and neuroinflammation. This journal publishes rigorously peer-reviewed open-access reports of original research and in-depth reviews of topics in neuroimmunology & neuroinflammation, affecting the full range of neurologic diseases including (but not limited to) Alzheimer's disease, Parkinson's disease, ALS, tauopathy, and stroke; multiple sclerosis and NMO; inflammatory peripheral nerve and muscle disease, Guillain-Barré and myasthenia gravis; nervous system infection; paraneoplastic syndromes, noninfectious encephalitides and other antibody-mediated disorders; and psychiatric and neurodevelopmental disorders. Clinical trials, instructive case reports, and small case series will also be featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信