{"title":"Targeting FDX1 by trilobatin to inhibit cuproptosis in doxorubicin-induced cardiotoxicity.","authors":"Jiajia Wei, Guozhen Lan, Wenfang Zhang, Wang Ran, Yu Wei, Xin Liu, Yuandong Zhang, Qihai Gong, Haibo Li, Jianmei Gao","doi":"10.1111/bph.17468","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Doxorubicin (DOX), an anthracycline chemotherapeutic agent, whose use is limited owing to its dose-dependent cardiotoxicity. Mitochondrial oxidative stress plays a crucial role in the pathogenesis of DOX-induced cardiotoxicity (DIC). Trilobatin (TLB), a naturally occurring food additive, exhibits strong antioxidant properties, but its cardioprotective effects in DIC is unclear. This study investigates the cardioprotective effect of TLB on DIC.</p><p><strong>Experimental approach: </strong>DOX was used to generate an in vivo and in vitro model of cardiotoxicity. Echocardiography, enzyme-linked immunosorbent assay (ELISA) and haematoxylin and eosin (H&E) staining were used to evaluate the cardiac function in these models. To identify the targets of TLB, RNA-sequence analysis, molecular dynamics simulations, surface plasmon resonance binding assays and protein immunoblotting techniques were used. Transmission electron microscopy, along with dihydroethidium and Mito-SOX staining, was conducted to examine the impact of trilobatin on mitochondrial oxidative stress. SiRNA transfection was performed to confirm the role of ferredoxin 1 (FDX1) in DIC development.</p><p><strong>Key results: </strong>In DIC mice, TLB improved cardiac function in a dose-dependent manner and inhibited myocardial fibrosis in DIC mice. TLB also attenuated DOX-induced mitochondrial dysfunction and reduced cardiac mitochondrial oxidative stress. TLB was found to directly bind to FDX1 and suppresses cuproptosis after DOX treatment, causing significant inhibition of cuproptosis-related proteins.</p><p><strong>Conclusions and implications: </strong>This is the first study to show that TLB strongly inhibits DIC by reducing mitochondrial oxidative stress and controlling DOX-mediated cuproptosis by targeting FDX1. Therefore, TLB is as a potential phytochemical cardioprotective candidate for ameliorating DIC.</p>","PeriodicalId":9262,"journal":{"name":"British Journal of Pharmacology","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bph.17468","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Doxorubicin (DOX), an anthracycline chemotherapeutic agent, whose use is limited owing to its dose-dependent cardiotoxicity. Mitochondrial oxidative stress plays a crucial role in the pathogenesis of DOX-induced cardiotoxicity (DIC). Trilobatin (TLB), a naturally occurring food additive, exhibits strong antioxidant properties, but its cardioprotective effects in DIC is unclear. This study investigates the cardioprotective effect of TLB on DIC.
Experimental approach: DOX was used to generate an in vivo and in vitro model of cardiotoxicity. Echocardiography, enzyme-linked immunosorbent assay (ELISA) and haematoxylin and eosin (H&E) staining were used to evaluate the cardiac function in these models. To identify the targets of TLB, RNA-sequence analysis, molecular dynamics simulations, surface plasmon resonance binding assays and protein immunoblotting techniques were used. Transmission electron microscopy, along with dihydroethidium and Mito-SOX staining, was conducted to examine the impact of trilobatin on mitochondrial oxidative stress. SiRNA transfection was performed to confirm the role of ferredoxin 1 (FDX1) in DIC development.
Key results: In DIC mice, TLB improved cardiac function in a dose-dependent manner and inhibited myocardial fibrosis in DIC mice. TLB also attenuated DOX-induced mitochondrial dysfunction and reduced cardiac mitochondrial oxidative stress. TLB was found to directly bind to FDX1 and suppresses cuproptosis after DOX treatment, causing significant inhibition of cuproptosis-related proteins.
Conclusions and implications: This is the first study to show that TLB strongly inhibits DIC by reducing mitochondrial oxidative stress and controlling DOX-mediated cuproptosis by targeting FDX1. Therefore, TLB is as a potential phytochemical cardioprotective candidate for ameliorating DIC.
期刊介绍:
The British Journal of Pharmacology (BJP) is a biomedical science journal offering comprehensive international coverage of experimental and translational pharmacology. It publishes original research, authoritative reviews, mini reviews, systematic reviews, meta-analyses, databases, letters to the Editor, and commentaries.
Review articles, databases, systematic reviews, and meta-analyses are typically commissioned, but unsolicited contributions are also considered, either as standalone papers or part of themed issues.
In addition to basic science research, BJP features translational pharmacology research, including proof-of-concept and early mechanistic studies in humans. While it generally does not publish first-in-man phase I studies or phase IIb, III, or IV studies, exceptions may be made under certain circumstances, particularly if results are combined with preclinical studies.