PTP inhibition improves the macrophage anti-tumor immune response and the efficacy of chemo- and radiotherapy.

IF 8.1 1区 医学 Q1 IMMUNOLOGY
Nestor Prieto-Dominguez, Paran Goel, Oluwagbemiga A Ojo, Katarina Moretto, Alisha Holtzhausen, Angel Humphryes, Xinyue Zhou, Valeriya Kuznetsova, Francesca Dempsey, Kelly Pittman, Rui Lu, Todd J Green, Lewis Z Shi, Robert S Welner, H Shelton Earp, Eric Ubil
{"title":"PTP inhibition improves the macrophage anti-tumor immune response and the efficacy of chemo- and radiotherapy.","authors":"Nestor Prieto-Dominguez, Paran Goel, Oluwagbemiga A Ojo, Katarina Moretto, Alisha Holtzhausen, Angel Humphryes, Xinyue Zhou, Valeriya Kuznetsova, Francesca Dempsey, Kelly Pittman, Rui Lu, Todd J Green, Lewis Z Shi, Robert S Welner, H Shelton Earp, Eric Ubil","doi":"10.1158/2326-6066.CIR-24-0335","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional anti-cancer therapies induce tumor cell death and subsequent release of Damage Associated Molecular Patterns (DAMPs) that activate the innate inflammatory response. Paradoxically, after treatment, macrophages often adopt a pro-wound healing, rather than pro-inflammatory, phenotype and contribute to cancer progression. We found that in areas proximal to DAMP release, tumor cells upregulate the expression of Pros1. Tumor-secreted Pros1 binds to the macrophage Mer receptor, consequently limiting responsiveness to DAMPs by preventing Toll Like Receptor (TLR) signal transduction. Pharmacological inhibition of PTP1b signaling downstream of Mer rescued the pro-inflammatory response, even in the presence of Pros1. Combining PTP inhibition with traditional therapeutics, like chemo- or radiotherapy, rescued the innate immune response to DAMPs, increased immune infiltration, and resulted in a 40-90% reduction in tumor growth in multiple treatment refractory preclinical models. Our findings suggest using PTP1b inhibitors may be a tumor agnostic means of improving the efficacy of some of the most widely used anti-cancer therapeutic agents.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0335","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional anti-cancer therapies induce tumor cell death and subsequent release of Damage Associated Molecular Patterns (DAMPs) that activate the innate inflammatory response. Paradoxically, after treatment, macrophages often adopt a pro-wound healing, rather than pro-inflammatory, phenotype and contribute to cancer progression. We found that in areas proximal to DAMP release, tumor cells upregulate the expression of Pros1. Tumor-secreted Pros1 binds to the macrophage Mer receptor, consequently limiting responsiveness to DAMPs by preventing Toll Like Receptor (TLR) signal transduction. Pharmacological inhibition of PTP1b signaling downstream of Mer rescued the pro-inflammatory response, even in the presence of Pros1. Combining PTP inhibition with traditional therapeutics, like chemo- or radiotherapy, rescued the innate immune response to DAMPs, increased immune infiltration, and resulted in a 40-90% reduction in tumor growth in multiple treatment refractory preclinical models. Our findings suggest using PTP1b inhibitors may be a tumor agnostic means of improving the efficacy of some of the most widely used anti-cancer therapeutic agents.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信