Transcriptome and WGCNA reveals the potential genetic basis of photoperiod-sensitive male sterility in soybean.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yuhua Yang, Suqin He, Lihong Xu, Minggui Wang, Shuichun Chen, Zhiyuan Bai, Tingting Yang, Bo Zhao, Lixiang Wang, Haiping Zhang, Jiangjiang Zhang, Ruijun Zhang
{"title":"Transcriptome and WGCNA reveals the potential genetic basis of photoperiod-sensitive male sterility in soybean.","authors":"Yuhua Yang, Suqin He, Lihong Xu, Minggui Wang, Shuichun Chen, Zhiyuan Bai, Tingting Yang, Bo Zhao, Lixiang Wang, Haiping Zhang, Jiangjiang Zhang, Ruijun Zhang","doi":"10.1186/s12864-025-11314-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Soybean (Glycine max (L.) Merr.) is a crucial crop due to its high plant protein and oil content. Previous studies have shown that soybeans exhibit significant heterosis in terms of yield and protein content However, the practical application of soybean heterosis remains difficult, as the molecular mechanisms underlying photoperiod-sensitive genic male sterile (PGMS) is still unclear.</p><p><strong>Results: </strong>This study characterized the PGMS line 88-428BY, which is sterile under short-day (SD) conditions and fertile under long-day (LD) conditions. To elucidate the genetic basis for this trait, we collected anthers, from 88-428BY under SD and LD conditions at three developmental stages, resulting in the identification of differentially expressed genes (DEGs) (2333, 2727 and 7282 DEGs, respectively) using Illumina transcriptome analysis. Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, we fund that among the DEGs, enriched genes were associated with photoperiod stress, light stimulus, oxidation-reduction processes, multicellular organism development and protein phosphorylation. Additionally, weighted correlation network analysis identified four modules (blue, brown, red, and yellow) that were significantly correlated with PGMS, revealing co-expressed hub genes with potential regulatory roles. Functional annotation of 224 DEGs with|KME| >0.9 across the four modules in seven databases highlighted their involvement in light stimulus, oxidation-reduction processes, multicellular organism development, and protein phosphorylation, suggesting their importance in soybean PGMS. By integrating fertility-related genes previously identified by other studies with the DEGs from our analysis, we identified eight candidate genes associated with the photosensitive sterility in soybeans.</p><p><strong>Conclusions: </strong>This study enhances the understanding of PGMS in soybean and establishes the genetic basis for a two-line hybrid seed production system in soybean.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"131"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816801/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11314-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Soybean (Glycine max (L.) Merr.) is a crucial crop due to its high plant protein and oil content. Previous studies have shown that soybeans exhibit significant heterosis in terms of yield and protein content However, the practical application of soybean heterosis remains difficult, as the molecular mechanisms underlying photoperiod-sensitive genic male sterile (PGMS) is still unclear.

Results: This study characterized the PGMS line 88-428BY, which is sterile under short-day (SD) conditions and fertile under long-day (LD) conditions. To elucidate the genetic basis for this trait, we collected anthers, from 88-428BY under SD and LD conditions at three developmental stages, resulting in the identification of differentially expressed genes (DEGs) (2333, 2727 and 7282 DEGs, respectively) using Illumina transcriptome analysis. Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, we fund that among the DEGs, enriched genes were associated with photoperiod stress, light stimulus, oxidation-reduction processes, multicellular organism development and protein phosphorylation. Additionally, weighted correlation network analysis identified four modules (blue, brown, red, and yellow) that were significantly correlated with PGMS, revealing co-expressed hub genes with potential regulatory roles. Functional annotation of 224 DEGs with|KME| >0.9 across the four modules in seven databases highlighted their involvement in light stimulus, oxidation-reduction processes, multicellular organism development, and protein phosphorylation, suggesting their importance in soybean PGMS. By integrating fertility-related genes previously identified by other studies with the DEGs from our analysis, we identified eight candidate genes associated with the photosensitive sterility in soybeans.

Conclusions: This study enhances the understanding of PGMS in soybean and establishes the genetic basis for a two-line hybrid seed production system in soybean.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信