Mammalian piRNA target prediction using a hierarchical attention model.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Tianjiao Zhang, Liang Chen, Haibin Zhu, Garry Wong
{"title":"Mammalian piRNA target prediction using a hierarchical attention model.","authors":"Tianjiao Zhang, Liang Chen, Haibin Zhu, Garry Wong","doi":"10.1186/s12859-025-06068-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Piwi-interacting RNAs (piRNAs) are well established for monitoring and protecting the genome from transposons in germline cells. Recently, numerous studies provided evidence that piRNAs also play important roles in regulating mRNA transcript levels. Despite their significant role in regulating cellular RNA levels, the piRNA targeting rules are not well defined, especially in mammals, which poses obstacles to the elucidation of piRNA function.</p><p><strong>Results: </strong>Given the complexity and current limitation in understanding the mammalian piRNA targeting rules, we designed a deep learning model by selecting appropriate deep learning sub-networks based on the targeting patterns of piRNA inferred from previous experiments. Additionally, to alleviate the problem of insufficient data, a transfer learning approach was employed. Our model achieves a good discriminatory power (Accuracy: 98.5%) in predicting an independent test dataset. Finally, this model was utilized to predict the targets of all mouse and human piRNAs available in the piRNA database.</p><p><strong>Conclusions: </strong>In this research, we developed a deep learning framework that significantly advances the prediction of piRNA targets, overcoming the limitations posed by insufficient data and current incomplete targeting rules. The piRNA target prediction network and results can be downloaded from https://github.com/SofiaTianjiaoZhang/piRNATarget .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"50"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06068-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Piwi-interacting RNAs (piRNAs) are well established for monitoring and protecting the genome from transposons in germline cells. Recently, numerous studies provided evidence that piRNAs also play important roles in regulating mRNA transcript levels. Despite their significant role in regulating cellular RNA levels, the piRNA targeting rules are not well defined, especially in mammals, which poses obstacles to the elucidation of piRNA function.

Results: Given the complexity and current limitation in understanding the mammalian piRNA targeting rules, we designed a deep learning model by selecting appropriate deep learning sub-networks based on the targeting patterns of piRNA inferred from previous experiments. Additionally, to alleviate the problem of insufficient data, a transfer learning approach was employed. Our model achieves a good discriminatory power (Accuracy: 98.5%) in predicting an independent test dataset. Finally, this model was utilized to predict the targets of all mouse and human piRNAs available in the piRNA database.

Conclusions: In this research, we developed a deep learning framework that significantly advances the prediction of piRNA targets, overcoming the limitations posed by insufficient data and current incomplete targeting rules. The piRNA target prediction network and results can be downloaded from https://github.com/SofiaTianjiaoZhang/piRNATarget .

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信