Structure-Activity Relationship of NMDA Receptor Ligands and Their Activities on the ERK Activation through Metabotropic Signaling Pathway.

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Biomolecules & Therapeutics Pub Date : 2025-03-01 Epub Date: 2025-02-12 DOI:10.4062/biomolther.2024.216
Dooti Kundu, Mengling Wang, Suresh Paudel, Shujie Wang, Choon-Gon Jang, Kyeong-Man Kim
{"title":"Structure-Activity Relationship of NMDA Receptor Ligands and Their Activities on the ERK Activation through Metabotropic Signaling Pathway.","authors":"Dooti Kundu, Mengling Wang, Suresh Paudel, Shujie Wang, Choon-Gon Jang, Kyeong-Man Kim","doi":"10.4062/biomolther.2024.216","DOIUrl":null,"url":null,"abstract":"<p><p>The N-methyl-D-aspartate receptor (NMDA-R) subunit GluN2B is abundantly expressed in brain regions critical for synaptic plasticity and cognitive processes. This study investigated the structure-activity relationships (SAR) of NMDA-R ligands using GluN2B as a molecular target. Thirty potential NMDA-R antagonists were categorized into two structural classes: 1-(1-phenylcyclohexyl) amines (series A) and α-amino-2-phenylcyclohexanone derivatives (series B). In series A compounds, the phenyl ring and R1 substituents were positioned at the carbon center of the cyclohexyl ring, with R2 substituents at the para- or meta-positions of the phenyl ring. SAR analysis revealed optimal binding affinity when R1 was carbonyl (C=O) and R2 was 4-methoxy (4-OMe). Series B compounds featured a cyclohexanone scaffold with NH-R1 at the α-position and a phenyl ring bearing R2 substituents at ortho-, meta-, or para-positions. Maximum binding affinity was achieved with R1 as hydrogen (H) and R2 as hydroxyl (OH). Compounds were assessed for GluN2B-mediated ERK activation to evaluate potential metabotropic signaling properties. Approximately 50% of the compounds demonstrated ERK activation through a non-ionotropic signaling cascade involving Src, phosphatidylinositol 3-kinase, and protein kinase C. This study elucidated key structural determinants for NMDA-R binding and characterized a novel metabotropic signaling pathway. Notably, our findings suggest that compounds acting as antagonists at the ionotropic site may simultaneously function as agonists through non-ionotropic mechanisms.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"278-285"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2024.216","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The N-methyl-D-aspartate receptor (NMDA-R) subunit GluN2B is abundantly expressed in brain regions critical for synaptic plasticity and cognitive processes. This study investigated the structure-activity relationships (SAR) of NMDA-R ligands using GluN2B as a molecular target. Thirty potential NMDA-R antagonists were categorized into two structural classes: 1-(1-phenylcyclohexyl) amines (series A) and α-amino-2-phenylcyclohexanone derivatives (series B). In series A compounds, the phenyl ring and R1 substituents were positioned at the carbon center of the cyclohexyl ring, with R2 substituents at the para- or meta-positions of the phenyl ring. SAR analysis revealed optimal binding affinity when R1 was carbonyl (C=O) and R2 was 4-methoxy (4-OMe). Series B compounds featured a cyclohexanone scaffold with NH-R1 at the α-position and a phenyl ring bearing R2 substituents at ortho-, meta-, or para-positions. Maximum binding affinity was achieved with R1 as hydrogen (H) and R2 as hydroxyl (OH). Compounds were assessed for GluN2B-mediated ERK activation to evaluate potential metabotropic signaling properties. Approximately 50% of the compounds demonstrated ERK activation through a non-ionotropic signaling cascade involving Src, phosphatidylinositol 3-kinase, and protein kinase C. This study elucidated key structural determinants for NMDA-R binding and characterized a novel metabotropic signaling pathway. Notably, our findings suggest that compounds acting as antagonists at the ionotropic site may simultaneously function as agonists through non-ionotropic mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
8.10%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信