Food deprivation is associated with telomere elongation during hibernation in a primate.

IF 2.8 2区 生物学 Q2 BIOLOGY
Biology Letters Pub Date : 2025-02-01 Epub Date: 2025-02-12 DOI:10.1098/rsbl.2024.0531
Marina B Blanco, Dana L Smith, Lydia K Greene, Jue Lin, Peter H Klopfer
{"title":"Food deprivation is associated with telomere elongation during hibernation in a primate.","authors":"Marina B Blanco, Dana L Smith, Lydia K Greene, Jue Lin, Peter H Klopfer","doi":"10.1098/rsbl.2024.0531","DOIUrl":null,"url":null,"abstract":"<p><p>Telomeres, the protective ends of chromosomes, progressively shorten due to incomplete mitotic replication and oxidative stress. In some organisms, transient telomere elongation may occur, for example, when individuals have an energy surplus to counter stress-induced life events or when elongating telomeres is a last chance to increase fitness. Mammalian hibernators are good models to test telomere dynamics, as they cycle between prolonged bouts of metabolic depression (torpor) punctuated by short surges to euthermia (arousals). We studied captive fat-tailed dwarf lemurs (<i>Cheirogaleus medius</i>), strepsirrhine primate hibernators, that were food-deprived (<i>n</i> = 8) or fed daily (<i>n</i> = 7) during hibernation (4.5 months). We compared telomere lengths, assayed via qPCR from oral swabs, at five strategic time points that span a full year. Food-deprived subjects underwent multi-day torpor/arousal cycles, lost considerable body mass and elongated telomeres during hibernation but shortened them upon emergence. In contrast, food-provisioned subjects ate daily, lost body mass more slowly, underwent shallower and shorter torpor bouts and experienced little change in telomere lengths during the same periods. Our results highlight a complex relationship between telomere dynamics, energy balance and torpor expression. Further investigation is warranted to elucidate the regulation of protective mechanisms in these primate hibernators.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":"21 2","pages":"20240531"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813570/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsbl.2024.0531","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Telomeres, the protective ends of chromosomes, progressively shorten due to incomplete mitotic replication and oxidative stress. In some organisms, transient telomere elongation may occur, for example, when individuals have an energy surplus to counter stress-induced life events or when elongating telomeres is a last chance to increase fitness. Mammalian hibernators are good models to test telomere dynamics, as they cycle between prolonged bouts of metabolic depression (torpor) punctuated by short surges to euthermia (arousals). We studied captive fat-tailed dwarf lemurs (Cheirogaleus medius), strepsirrhine primate hibernators, that were food-deprived (n = 8) or fed daily (n = 7) during hibernation (4.5 months). We compared telomere lengths, assayed via qPCR from oral swabs, at five strategic time points that span a full year. Food-deprived subjects underwent multi-day torpor/arousal cycles, lost considerable body mass and elongated telomeres during hibernation but shortened them upon emergence. In contrast, food-provisioned subjects ate daily, lost body mass more slowly, underwent shallower and shorter torpor bouts and experienced little change in telomere lengths during the same periods. Our results highlight a complex relationship between telomere dynamics, energy balance and torpor expression. Further investigation is warranted to elucidate the regulation of protective mechanisms in these primate hibernators.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Letters
Biology Letters 生物-进化生物学
CiteScore
5.50
自引率
3.00%
发文量
164
审稿时长
1.0 months
期刊介绍: Previously a supplement to Proceedings B, and launched as an independent journal in 2005, Biology Letters is a primarily online, peer-reviewed journal that publishes short, high-quality articles, reviews and opinion pieces from across the biological sciences. The scope of Biology Letters is vast - publishing high-quality research in any area of the biological sciences. However, we have particular strengths in the biology, evolution and ecology of whole organisms. We also publish in other areas of biology, such as molecular ecology and evolution, environmental science, and phylogenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信