Deep learning-based video-level view classification of two-dimensional transthoracic echocardiography.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Hanlin Cheng, Zhongqing Shi, Zhanru Qi, Xiaoxian Wang, Guanjun Guo, Aijuan Fang, Zhibin Jin, Chunjie Shan, Ruiyang Chen, Yue Du, Sunnan Qian, Shouhua Luo, Jing Yao
{"title":"Deep learning-based video-level view classification of two-dimensional transthoracic echocardiography.","authors":"Hanlin Cheng, Zhongqing Shi, Zhanru Qi, Xiaoxian Wang, Guanjun Guo, Aijuan Fang, Zhibin Jin, Chunjie Shan, Ruiyang Chen, Yue Du, Sunnan Qian, Shouhua Luo, Jing Yao","doi":"10.1088/2057-1976/adb493","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, deep learning (DL)-based automatic view classification of 2D transthoracic echocardiography (TTE) has demonstrated strong performance, but has not fully addressed key clinical requirements such as view coverage, classification accuracy, inference delay, and the need for thorough exploration of performance in real-world clinical settings. We proposed a clinical requirement-driven DL framework, TTESlowFast, for accurate and efficient video-level TTE view classification. This framework is based on the SlowFast architecture and incorporates both a sampling balance strategy and a data augmentation strategy to address class imbalance and the limited availability of labeled TTE videos, respectively. TTESlowFast achieved an overall accuracy of 0.9881, precision of 0.9870, recall of 0.9867, and F1 score of 0.9867 on the test set. After field deployment, the model's overall accuracy, precision, recall, and F1 score for view classification were 0.9607, 0.9586, 0.9499, and 0.9530, respectively. The inference time for processing a single TTE video was 105.0 ± 50.1 ms on a desktop GPU (NVIDIA RTX 3060) and 186.0 ± 5.2 ms on an edge computing device (Jetson Orin Nano), which basically meets the clinical demand for immediate processing following image acquisition. The TTESlowFast framework proposed in this study demonstrates effective performance in TTE view classification with low inference delay, making it well-suited for various medical scenarios and showing significant potential for practical application.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adb493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, deep learning (DL)-based automatic view classification of 2D transthoracic echocardiography (TTE) has demonstrated strong performance, but has not fully addressed key clinical requirements such as view coverage, classification accuracy, inference delay, and the need for thorough exploration of performance in real-world clinical settings. We proposed a clinical requirement-driven DL framework, TTESlowFast, for accurate and efficient video-level TTE view classification. This framework is based on the SlowFast architecture and incorporates both a sampling balance strategy and a data augmentation strategy to address class imbalance and the limited availability of labeled TTE videos, respectively. TTESlowFast achieved an overall accuracy of 0.9881, precision of 0.9870, recall of 0.9867, and F1 score of 0.9867 on the test set. After field deployment, the model's overall accuracy, precision, recall, and F1 score for view classification were 0.9607, 0.9586, 0.9499, and 0.9530, respectively. The inference time for processing a single TTE video was 105.0 ± 50.1 ms on a desktop GPU (NVIDIA RTX 3060) and 186.0 ± 5.2 ms on an edge computing device (Jetson Orin Nano), which basically meets the clinical demand for immediate processing following image acquisition. The TTESlowFast framework proposed in this study demonstrates effective performance in TTE view classification with low inference delay, making it well-suited for various medical scenarios and showing significant potential for practical application.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信