Predictive Thermodynamics for Isochoric (Constant-Volume) Cryopreservation Systems.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2025-02-20 Epub Date: 2025-02-11 DOI:10.1021/acs.jpcb.4c03915
Julia H Grenke, Janet A W Elliott
{"title":"Predictive Thermodynamics for Isochoric (Constant-Volume) Cryopreservation Systems.","authors":"Julia H Grenke, Janet A W Elliott","doi":"10.1021/acs.jpcb.4c03915","DOIUrl":null,"url":null,"abstract":"<p><p>Cryopreservation is the preservation and storage of biomaterials using low temperatures. There are several approaches to cryopreservation, and these often include the use of cryoprotectants, which are solutes used to lower the freezing point of water. Isochoric (constant-volume) cryopreservation is a form of cryopreservation that has been gaining interest over the past 18 years. This method utilizes the anomalous nature of water in that it expands as it freezes. The expansion of ice on freezing is used to induce a pressure in the system that limits ice growth. In this work, we use Gibbsian thermodynamics, the Elliott et al. multisolute osmotic virial equation, the Feistel and Wagner correlation for ice Ih, and the Grenke and Elliott correlation for the thermodynamic properties of liquid water at low temperatures and high pressures to predict how the pressure, volume fraction of ice, and solute concentration in the unfrozen fraction change as the solution is cooled isochorically. We then verified our model by predicting experimental results for saline solutions and ternary aqueous solutions containing NaCl and organic compounds commonly used as cryoprotectants: glycerol, ethylene glycol, propylene glycol, and dimethyl sulfoxide. We found that our model accurately predicts experimental data that were collected for cryoprotectant concentrations as high as 5 M, and temperatures as low as -25 °C. Since we have shown that our liquid water correlation, on which this work was based, makes accurate predictions to -70 °C, as long as the pressure is not higher than 400 MPa, we anticipate that the prediction methods presented in this work will be accurate down to -70 °C. In this work we also modeled how sealing the isochoric chamber at room temperature versus at the nucleation temperature impacts isochoric freezing. The prediction methods developed in this work can be used in the future design of isochoric cryopreservation experiments and protocols.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"2013-2029"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c03915","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cryopreservation is the preservation and storage of biomaterials using low temperatures. There are several approaches to cryopreservation, and these often include the use of cryoprotectants, which are solutes used to lower the freezing point of water. Isochoric (constant-volume) cryopreservation is a form of cryopreservation that has been gaining interest over the past 18 years. This method utilizes the anomalous nature of water in that it expands as it freezes. The expansion of ice on freezing is used to induce a pressure in the system that limits ice growth. In this work, we use Gibbsian thermodynamics, the Elliott et al. multisolute osmotic virial equation, the Feistel and Wagner correlation for ice Ih, and the Grenke and Elliott correlation for the thermodynamic properties of liquid water at low temperatures and high pressures to predict how the pressure, volume fraction of ice, and solute concentration in the unfrozen fraction change as the solution is cooled isochorically. We then verified our model by predicting experimental results for saline solutions and ternary aqueous solutions containing NaCl and organic compounds commonly used as cryoprotectants: glycerol, ethylene glycol, propylene glycol, and dimethyl sulfoxide. We found that our model accurately predicts experimental data that were collected for cryoprotectant concentrations as high as 5 M, and temperatures as low as -25 °C. Since we have shown that our liquid water correlation, on which this work was based, makes accurate predictions to -70 °C, as long as the pressure is not higher than 400 MPa, we anticipate that the prediction methods presented in this work will be accurate down to -70 °C. In this work we also modeled how sealing the isochoric chamber at room temperature versus at the nucleation temperature impacts isochoric freezing. The prediction methods developed in this work can be used in the future design of isochoric cryopreservation experiments and protocols.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信