Using Deep Learning to Estimate Vibration Comfort of Large-Scale Shake Table During Operation

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Minte Zhang, Tong Guo, Yueran Zong, Weijie Xu, Chee Kiong Soh
{"title":"Using Deep Learning to Estimate Vibration Comfort of Large-Scale Shake Table During Operation","authors":"Minte Zhang,&nbsp;Tong Guo,&nbsp;Yueran Zong,&nbsp;Weijie Xu,&nbsp;Chee Kiong Soh","doi":"10.1155/stc/6888254","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Shake tables are useful earthquake simulation tools for structural seismic experiment, but they may also inadvertently induce vibrations to nearby buildings while in operation. Accelerating the comfort level quantification process of these vibrations before conducting a shake table test is necessary. To this end, this paper focuses on the influence of vibration introduced by a 6 × 9 m large-scale shake table at Southeast University and presents a one-dimensional convolutional neural network–based deep learning approach to efficiently estimate the vibration comfort of the shake table laboratory and surrounding buildings. Based on the on-site structural vibration monitoring of shake table test, a three-dimensional numerical model of the shake table–soil–surrounding building system is established and validated through the finite element method, and thus a dataset comprising 12,215 groups of input (i.e., peak acceleration values and time-history of the triaxial ground motion) and output (i.e., three-directional acceleration response for nine measuring points of surrounding buildings) data is simulated. Thereafter, the deep learning network is trained with 80% of the dataset and tested with the remaining 20%. The test results indicate that the approach enables the network to directly extract dynamic features from triaxial ground motion accelerations and to accurately estimate the weighted acceleration level (WAL) of nine different locations at the surrounding buildings. Finally, the optimized network is verified through an actual shake table experimental test on a self-centering concrete structure, which confirms the superior performance of the proposed approach on shake table–induced vibration comfort estimation. The approach is also beneficial for researchers to design reasonable loading scenarios before conducting shake table tests.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/6888254","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/6888254","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Shake tables are useful earthquake simulation tools for structural seismic experiment, but they may also inadvertently induce vibrations to nearby buildings while in operation. Accelerating the comfort level quantification process of these vibrations before conducting a shake table test is necessary. To this end, this paper focuses on the influence of vibration introduced by a 6 × 9 m large-scale shake table at Southeast University and presents a one-dimensional convolutional neural network–based deep learning approach to efficiently estimate the vibration comfort of the shake table laboratory and surrounding buildings. Based on the on-site structural vibration monitoring of shake table test, a three-dimensional numerical model of the shake table–soil–surrounding building system is established and validated through the finite element method, and thus a dataset comprising 12,215 groups of input (i.e., peak acceleration values and time-history of the triaxial ground motion) and output (i.e., three-directional acceleration response for nine measuring points of surrounding buildings) data is simulated. Thereafter, the deep learning network is trained with 80% of the dataset and tested with the remaining 20%. The test results indicate that the approach enables the network to directly extract dynamic features from triaxial ground motion accelerations and to accurately estimate the weighted acceleration level (WAL) of nine different locations at the surrounding buildings. Finally, the optimized network is verified through an actual shake table experimental test on a self-centering concrete structure, which confirms the superior performance of the proposed approach on shake table–induced vibration comfort estimation. The approach is also beneficial for researchers to design reasonable loading scenarios before conducting shake table tests.

Abstract Image

基于深度学习的大型振动台运行振动舒适性评估
振动台是结构地震实验中有用的地震模拟工具,但它们在运行过程中也可能无意中引起附近建筑物的振动。在进行振动台测试之前,加速这些振动的舒适度量化过程是必要的。为此,本文以东南大学6 × 9 m大型振动台为研究对象,提出了一种基于一维卷积神经网络的深度学习方法,对振动台实验室及周边建筑的振动舒适性进行有效评估。在振动台试验现场结构振动监测的基础上,建立了振动台-周围土体系统的三维数值模型,并通过有限元方法进行了验证,从而模拟了包含12215组输入(即三轴地震动峰值加速度值和时程)和输出(即周围建筑物9个测点的三方向加速度响应)数据的数据集。然后,用80%的数据集训练深度学习网络,用剩下的20%进行测试。试验结果表明,该方法能直接提取三轴地震动加速度的动态特征,并能准确估计周边建筑物9个不同位置的加权加速度水平(WAL)。最后,通过对某自定心混凝土结构的振动台试验验证了优化后的网络,验证了该方法在振动台诱导振动舒适性估计上的优越性。该方法也有利于研究人员在进行振动台试验前设计合理的加载场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信