Recognition of Structural Components and Surface Damage Using Regularization-Based Continual Learning

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Yung-I Chang, Rih-Teng Wu
{"title":"Recognition of Structural Components and Surface Damage Using Regularization-Based Continual Learning","authors":"Yung-I Chang,&nbsp;Rih-Teng Wu","doi":"10.1155/stc/6005674","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The identification of surface damage and structural components is critical for structural health monitoring (SHM) in order to evaluate building safety. Recently, deep neural networks (DNNs)–based approaches have emerged rapidly. However, the existing approaches often encounter catastrophic forgetting when the trained model is used to learn new classes of interest. Conventionally, joint training of the network on both the previous and new data is employed, which is time-consuming and demanding for computation and memory storage. To address this issue, we propose a new approach that integrates two continual learning (CL) algorithms, i.e., elastic weight consolidation (EWC) and learning without forgetting (LwF), denoted as EWCLwF. We also investigate two scenarios for a comprehensive discussion, incrementally learning the classes with similar versus dissimilar data characteristics. Results have demonstrated that EWCLwF requires significantly less training time and data storage compared to joint training, and the average accuracy is enhanced by 0.7%–4.5% compared against other baseline references in both scenarios. Furthermore, our findings reveal that all CL-based approaches benefit from similar data characteristics, while joint training not only fails to benefit but performs even worse, which indicates a scenario that can emphasize the advantage of our proposed approach. The outcome of this study will enhance the long-term monitoring of progressively increasing learning classes in SHM, leading to more efficient usage and management of computing resources.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/6005674","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/6005674","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of surface damage and structural components is critical for structural health monitoring (SHM) in order to evaluate building safety. Recently, deep neural networks (DNNs)–based approaches have emerged rapidly. However, the existing approaches often encounter catastrophic forgetting when the trained model is used to learn new classes of interest. Conventionally, joint training of the network on both the previous and new data is employed, which is time-consuming and demanding for computation and memory storage. To address this issue, we propose a new approach that integrates two continual learning (CL) algorithms, i.e., elastic weight consolidation (EWC) and learning without forgetting (LwF), denoted as EWCLwF. We also investigate two scenarios for a comprehensive discussion, incrementally learning the classes with similar versus dissimilar data characteristics. Results have demonstrated that EWCLwF requires significantly less training time and data storage compared to joint training, and the average accuracy is enhanced by 0.7%–4.5% compared against other baseline references in both scenarios. Furthermore, our findings reveal that all CL-based approaches benefit from similar data characteristics, while joint training not only fails to benefit but performs even worse, which indicates a scenario that can emphasize the advantage of our proposed approach. The outcome of this study will enhance the long-term monitoring of progressively increasing learning classes in SHM, leading to more efficient usage and management of computing resources.

Abstract Image

使用基于正则化的持续学习识别结构部件和表面损伤
在结构健康监测(SHM)中,表面损伤和结构构件的识别是评估建筑安全的关键。近年来,基于深度神经网络(dnn)的方法迅速兴起。然而,当训练好的模型用于学习新的感兴趣的类别时,现有的方法经常会遇到灾难性的遗忘。传统的方法是对旧数据和新数据进行联合训练,耗时长,对计算量和存储空间要求高。为了解决这个问题,我们提出了一种新的方法,该方法集成了两种持续学习(CL)算法,即弹性权巩固(EWC)和无遗忘学习(LwF),记为EWCLwF。我们还研究了两种场景,以进行全面的讨论,逐步学习具有相似和不同数据特征的类。结果表明,与联合训练相比,EWCLwF所需的训练时间和数据存储显著减少,两种场景下的平均准确率均比其他基准参考提高0.7%-4.5%。此外,我们的研究结果表明,所有基于cl的方法都受益于相似的数据特征,而联合训练不仅没有受益,而且表现更差,这表明了一个可以强调我们提出的方法优势的场景。这项研究的结果,将有助加强对逐步增加的计算机管理课程的长期监测,从而更有效地使用和管理计算机资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信