A Comparative Study of GO/TiO2/SiO2 Catalysts for the Photocatalytic Degradation of Methylene Blue and Phenolic Compounds

IF 1.5 Q4 ENGINEERING, ENVIRONMENTAL
Abeer Adaileh, Ahmed Abu-Rayyan, Anas Khasawneh, Waed Alahmad
{"title":"A Comparative Study of GO/TiO2/SiO2 Catalysts for the Photocatalytic Degradation of Methylene Blue and Phenolic Compounds","authors":"Abeer Adaileh,&nbsp;Ahmed Abu-Rayyan,&nbsp;Anas Khasawneh,&nbsp;Waed Alahmad","doi":"10.1002/tqem.70058","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study scrutinizes the photodegradation efficacy of methylene blue (MB) and selected phenolic compounds, emphasizing variables such as pH, catalyst dosage, and initial pollutant concentration. Employing a GO/TiO₂/SiO₂ composite (NC-II) composed of 50:50% TiO₂ and SiO₂, the research identifies NC-II as the optimal catalyst, achieving up to 100% degradation of MB under ideal conditions (0.5 ppm initial concentration, pH 10). For MB degradation, maximal rates were recorded under alkaline conditions (pH 8–10), with NC-II reaching up to 84.6% degradation at pH 10, surpassing the 46.5% observed for NC-I and 37.7% for NC-III at the same pH level. Results also indicate that an increase in catalyst dosage up to 0.3 g enhances degradation rates, with NC-II achieving 63.7% degradation at this dosage, in contrast to 17.8% for NC-I and 53.1% for NC-III. In the case of phenolic compounds, degradation efficiencies varied between 55% and 86%, with NC-III demonstrating the highest photodegradation capability, achieving up to 86% degradation for Bisphenol A at a 0.3 g dosage. The degradation of 4-chlorophenol and phenol was more pronounced at a neutral pH (5–6), with zero-order kinetics producing superior regression coefficients (<i>R</i><sup>2</sup> = 0.91–0.99) compared to pseudo-first-order models. Moreover, NC-II maintained over 80% degradation efficiency across five reusability cycles, underscoring its durability and minimal decline in performance. This study substantiates the efficacy of TiO₂:SiO₂ composites as cost-effective, high-performance catalysts suitable for diverse environmental conditions, where adjustments in pH and catalyst dosage can further refine photodegradation efficiency across different pollutant types.</p>\n </div>","PeriodicalId":35327,"journal":{"name":"Environmental Quality Management","volume":"34 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Quality Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tqem.70058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study scrutinizes the photodegradation efficacy of methylene blue (MB) and selected phenolic compounds, emphasizing variables such as pH, catalyst dosage, and initial pollutant concentration. Employing a GO/TiO₂/SiO₂ composite (NC-II) composed of 50:50% TiO₂ and SiO₂, the research identifies NC-II as the optimal catalyst, achieving up to 100% degradation of MB under ideal conditions (0.5 ppm initial concentration, pH 10). For MB degradation, maximal rates were recorded under alkaline conditions (pH 8–10), with NC-II reaching up to 84.6% degradation at pH 10, surpassing the 46.5% observed for NC-I and 37.7% for NC-III at the same pH level. Results also indicate that an increase in catalyst dosage up to 0.3 g enhances degradation rates, with NC-II achieving 63.7% degradation at this dosage, in contrast to 17.8% for NC-I and 53.1% for NC-III. In the case of phenolic compounds, degradation efficiencies varied between 55% and 86%, with NC-III demonstrating the highest photodegradation capability, achieving up to 86% degradation for Bisphenol A at a 0.3 g dosage. The degradation of 4-chlorophenol and phenol was more pronounced at a neutral pH (5–6), with zero-order kinetics producing superior regression coefficients (R2 = 0.91–0.99) compared to pseudo-first-order models. Moreover, NC-II maintained over 80% degradation efficiency across five reusability cycles, underscoring its durability and minimal decline in performance. This study substantiates the efficacy of TiO₂:SiO₂ composites as cost-effective, high-performance catalysts suitable for diverse environmental conditions, where adjustments in pH and catalyst dosage can further refine photodegradation efficiency across different pollutant types.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Quality Management
Environmental Quality Management Environmental Science-Management, Monitoring, Policy and Law
CiteScore
2.20
自引率
0.00%
发文量
94
期刊介绍: Four times a year, this practical journal shows you how to improve environmental performance and exceed voluntary standards such as ISO 14000. In each issue, you"ll find in-depth articles and the most current case studies of successful environmental quality improvement efforts -- and guidance on how you can apply these goals to your organization. Written by leading industry experts and practitioners, Environmental Quality Management brings you innovative practices in Performance Measurement...Life-Cycle Assessments...Safety Management... Environmental Auditing...ISO 14000 Standards and Certification..."Green Accounting"...Environmental Communication...Sustainable Development Issues...Environmental Benchmarking...Global Environmental Law and Regulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信