Live-Cell Visualization of Histone Modification Using Bimolecular Complementation

IF 1.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
A. I. Stepanov, L. V. Putlyaeva, A. A. Shuvaeva, M. A. Andrushkin, M. S. Baranov, N. G. Gurskaya, K. A. Lukyanov
{"title":"Live-Cell Visualization of Histone Modification Using Bimolecular Complementation","authors":"A. I. Stepanov,&nbsp;L. V. Putlyaeva,&nbsp;A. A. Shuvaeva,&nbsp;M. A. Andrushkin,&nbsp;M. S. Baranov,&nbsp;N. G. Gurskaya,&nbsp;K. A. Lukyanov","doi":"10.1134/S1068162025010261","DOIUrl":null,"url":null,"abstract":"<p><b>Objective:</b> The study of histone post-translational modifications (PTMs) is a rapidly developing field, yet the tools available for detecting and interpreting these modifications are limited. Histone modifications, such as methylation, acetylation, and phosphorylation, play a crucial role in regulating chromatin dynamics and gene expression. Specific binding of histone modification “reader” domains (HMRDs) is central to this regulation, allowing for the recruitment of proteins that facilitate chromatin remodeling. This research aims to develop genetically encoded sensors based on HMRDs to study histone modifications in live cells, offering a more efficient and flexible method for studying epigenetic changes. <b>Methods:</b> We designed genetically encoded sensors that utilize HMRDs and splitFAST to bind specifically to different histone modifications. These sensors were incorporated into cells to track the dynamic changes in histone modifications. The performance of these sensors was evaluated through live-cell imaging, using fluorescent microscopy to monitor histone modifications. <b>Results and Discussion:</b> The genetically encoded sensors demonstrated high specificity and sensitivity to various histone modifications. Sensors based on SplitFAST and HMRDs MPP8 and AF9 exhibited specific distributions for H3K9me3 and H3K9ac. Moreover, the combination of these two domains with different parts of SplitFAST showed spatial proximity between H3K9me3 and H3K9ac. These findings suggest that the integration of HMRD-based sensors, MPP8 and AF9, with SplitFAST could provide valuable tools for live-cell monitoring of histone modifications and their roles in gene regulation and cellular response mechanisms. <b>Conclusions:</b> The development of genetically encoded sensors for histone modifications based on HMRDs provides a powerful new tool for studying chromatin dynamics in live cells. These sensors offer a more direct and real-time approach to understanding the complex mechanisms of histone modification and their impact on gene expression.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"51 1","pages":"320 - 329"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1068162025010261","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The study of histone post-translational modifications (PTMs) is a rapidly developing field, yet the tools available for detecting and interpreting these modifications are limited. Histone modifications, such as methylation, acetylation, and phosphorylation, play a crucial role in regulating chromatin dynamics and gene expression. Specific binding of histone modification “reader” domains (HMRDs) is central to this regulation, allowing for the recruitment of proteins that facilitate chromatin remodeling. This research aims to develop genetically encoded sensors based on HMRDs to study histone modifications in live cells, offering a more efficient and flexible method for studying epigenetic changes. Methods: We designed genetically encoded sensors that utilize HMRDs and splitFAST to bind specifically to different histone modifications. These sensors were incorporated into cells to track the dynamic changes in histone modifications. The performance of these sensors was evaluated through live-cell imaging, using fluorescent microscopy to monitor histone modifications. Results and Discussion: The genetically encoded sensors demonstrated high specificity and sensitivity to various histone modifications. Sensors based on SplitFAST and HMRDs MPP8 and AF9 exhibited specific distributions for H3K9me3 and H3K9ac. Moreover, the combination of these two domains with different parts of SplitFAST showed spatial proximity between H3K9me3 and H3K9ac. These findings suggest that the integration of HMRD-based sensors, MPP8 and AF9, with SplitFAST could provide valuable tools for live-cell monitoring of histone modifications and their roles in gene regulation and cellular response mechanisms. Conclusions: The development of genetically encoded sensors for histone modifications based on HMRDs provides a powerful new tool for studying chromatin dynamics in live cells. These sensors offer a more direct and real-time approach to understanding the complex mechanisms of histone modification and their impact on gene expression.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Bioorganic Chemistry
Russian Journal of Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
1.80
自引率
10.00%
发文量
118
审稿时长
3 months
期刊介绍: Russian Journal of Bioorganic Chemistry publishes reviews and original experimental and theoretical studies on the structure, function, structure–activity relationships, and synthesis of biopolymers, such as proteins, nucleic acids, polysaccharides, mixed biopolymers, and their complexes, and low-molecular-weight biologically active compounds (peptides, sugars, lipids, antibiotics, etc.). The journal also covers selected aspects of neuro- and immunochemistry, biotechnology, and ecology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信