Lüders and Portevin–Le Chatelier Bands at the Stage of Elastoplastic Transition: Nucleation and Propagation

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Yu. A. Khon
{"title":"Lüders and Portevin–Le Chatelier Bands at the Stage of Elastoplastic Transition: Nucleation and Propagation","authors":"Yu. A. Khon","doi":"10.1134/S1029959923600854","DOIUrl":null,"url":null,"abstract":"<p>The work is devoted to the theoretical study of the nucleation and propagation of Lüders bands on the yield plateau and of moving Portevin–Le Chatelier bands of type A (solitary waves of plastic flow) at the stage of parabolic hardening during strain aging. The proposed model considers collective deformation modes on the spatiotemporal meso- and macroscales. Strain aging changes the state of a deformable medium on the mesoscale. Deformation of a medium under constant-rate uniaxial tension is described by a system of two coupled nonlinear parabolic equations for dynamic order parameters. The coefficients of these equations depend on the impurity concentration. On the yield plateau, solutions of the equations in the form of a switching wave describe the nucleation (at the yield drop stage) and propagation of Lüders bands. Depending on the temperature and rate of deformation during strain aging, a yield drop may be repeated on the yield plateau. Its formation changes the mode of Lüders band propagation from constant-velocity continuous to discrete one. At the strain hardening stage, the nucleation and propagation of the Portevin–Le Chatelier band are described by solutions in the form of a traveling autosoliton (a solitary wave of plastic flow).</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"28 1","pages":"91 - 100"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959923600854","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The work is devoted to the theoretical study of the nucleation and propagation of Lüders bands on the yield plateau and of moving Portevin–Le Chatelier bands of type A (solitary waves of plastic flow) at the stage of parabolic hardening during strain aging. The proposed model considers collective deformation modes on the spatiotemporal meso- and macroscales. Strain aging changes the state of a deformable medium on the mesoscale. Deformation of a medium under constant-rate uniaxial tension is described by a system of two coupled nonlinear parabolic equations for dynamic order parameters. The coefficients of these equations depend on the impurity concentration. On the yield plateau, solutions of the equations in the form of a switching wave describe the nucleation (at the yield drop stage) and propagation of Lüders bands. Depending on the temperature and rate of deformation during strain aging, a yield drop may be repeated on the yield plateau. Its formation changes the mode of Lüders band propagation from constant-velocity continuous to discrete one. At the strain hardening stage, the nucleation and propagation of the Portevin–Le Chatelier band are described by solutions in the form of a traveling autosoliton (a solitary wave of plastic flow).

Abstract Image

弹塑性转变阶段的l ders和Portevin-Le Chatelier带:成核和扩展
本文主要研究了应变时效过程中屈服高原上l ders带的形核和扩展,以及A型运动Portevin-Le Chatelier带(塑性流动孤立波)在抛物线硬化阶段的形核和扩展。该模型考虑了时空中观和宏观尺度上的集体变形模式。应变时效在中尺度上改变可变形介质的状态。介质在恒速率单轴拉伸作用下的变形由两个非线性耦合抛物方程系统描述。这些方程的系数取决于杂质浓度。在屈服平台上,方程的解以开关波的形式描述了l ders带的成核(在屈服下降阶段)和传播。根据应变时效过程中的温度和变形速率,屈服下降可能在屈服平台上重复出现。它的形成改变了l ders波段的传播模式,由匀速连续传播转变为离散传播。在应变硬化阶段,波特文-勒夏特列带的形核和扩展被描述为一个行自孤子(塑性流动的孤立波)形式的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信