On the Propagation of Bulk Waves in Functionally Graded Beams with Consideration for Imperfection

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
T. Tang, J. Gao, C. Jin, X. Huang
{"title":"On the Propagation of Bulk Waves in Functionally Graded Beams with Consideration for Imperfection","authors":"T. Tang,&nbsp;J. Gao,&nbsp;C. Jin,&nbsp;X. Huang","doi":"10.1134/S1029959924601581","DOIUrl":null,"url":null,"abstract":"<p>Wave propagation analysis can be employed in various fields, such as nondestructive testing and structural health monitoring, which makes it so interesting and attractive. In the present investigation, an analytical method based on an exponential function was used to solve the wave propagation problem in functionally graded (FG) beams with consideration for imperfection via refined higher-order shear deformation theory. The recently developed porosity-dependent homogenization model was used to analyze the influence of imperfection on the wave dispersion behavior of porous beams. Material properties of FG beams were assumed to change across the thickness. The conventional porosity model illustrates a linear relationship between the porosity coefficient and material properties. However, the influence of porosity is actually characterized by a nonlinear relationship. This statement rose from some experimental investigations. To examine the interchange between the porous beam and foundation, Winkler–Pasternak two-parameter models were used as the elastic foundation. Uniform temperature change is taken into account to study the thermal environment effect. The principle of Hamilton is implemented to derive equations of motion for imperfect FG beams. The obtained governing equations were analytically solved. The influence of the wave number, porosity coefficient, temperature change, gradient index, length-to-thickness ratio, Winkler and Pasternak coefficients on the wave propagation in porous FG beams was studied.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"28 1","pages":"134 - 144"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924601581","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Wave propagation analysis can be employed in various fields, such as nondestructive testing and structural health monitoring, which makes it so interesting and attractive. In the present investigation, an analytical method based on an exponential function was used to solve the wave propagation problem in functionally graded (FG) beams with consideration for imperfection via refined higher-order shear deformation theory. The recently developed porosity-dependent homogenization model was used to analyze the influence of imperfection on the wave dispersion behavior of porous beams. Material properties of FG beams were assumed to change across the thickness. The conventional porosity model illustrates a linear relationship between the porosity coefficient and material properties. However, the influence of porosity is actually characterized by a nonlinear relationship. This statement rose from some experimental investigations. To examine the interchange between the porous beam and foundation, Winkler–Pasternak two-parameter models were used as the elastic foundation. Uniform temperature change is taken into account to study the thermal environment effect. The principle of Hamilton is implemented to derive equations of motion for imperfect FG beams. The obtained governing equations were analytically solved. The influence of the wave number, porosity coefficient, temperature change, gradient index, length-to-thickness ratio, Winkler and Pasternak coefficients on the wave propagation in porous FG beams was studied.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信