Qiming Du, Jinchen Xu, Yu Zhu, Hang Lian, Qibing Xiong, Danyang Zheng, Yi Liu, Zheng Tu, Zheng Shan
{"title":"QCCP: a taskflow programming model for emerging computing scenario","authors":"Qiming Du, Jinchen Xu, Yu Zhu, Hang Lian, Qibing Xiong, Danyang Zheng, Yi Liu, Zheng Tu, Zheng Shan","doi":"10.1140/epjqt/s40507-025-00318-5","DOIUrl":null,"url":null,"abstract":"<div><p>As the demand for computing power continues to rise, it is difficult for a single type of computing device or architecture to satisfy the current situation. Diversity and heterogeneity are becoming more and more popular. Seamlessly integrating the realms of high performance computing and quantum computing, and harnessing their collective potential, has emerged as a consensus approach to effectively address the pressing need for increased computing power. In the emerging computing scenario, various different types of computing devices have super-heterogeneous characteristics, and there are significant differences in computational principles, programming models, parallelism, etc. Effectively harnessing these disparate resources and achieving a unified programming paradigm have become urgent imperatives. To address the above problems, this paper introduces QCCP, a taskflow programming model that enables efficient collaborative computing between classical computers and quantum computers. QCCP establishes a unified programming abstraction, shields the super-heterogeneous characteristics of the underlying network and hardware, and supports flexible scheduling for different computational backends. The experimental results indicate that QCCP can support the processing of hybrid classical-quantum applications with diverse program structures. In particular, QCCP reveals its immense potential and superiority in tackling real-world challenges, specifically in the realm of quantum circuit cutting and reconstruction.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00318-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00318-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
As the demand for computing power continues to rise, it is difficult for a single type of computing device or architecture to satisfy the current situation. Diversity and heterogeneity are becoming more and more popular. Seamlessly integrating the realms of high performance computing and quantum computing, and harnessing their collective potential, has emerged as a consensus approach to effectively address the pressing need for increased computing power. In the emerging computing scenario, various different types of computing devices have super-heterogeneous characteristics, and there are significant differences in computational principles, programming models, parallelism, etc. Effectively harnessing these disparate resources and achieving a unified programming paradigm have become urgent imperatives. To address the above problems, this paper introduces QCCP, a taskflow programming model that enables efficient collaborative computing between classical computers and quantum computers. QCCP establishes a unified programming abstraction, shields the super-heterogeneous characteristics of the underlying network and hardware, and supports flexible scheduling for different computational backends. The experimental results indicate that QCCP can support the processing of hybrid classical-quantum applications with diverse program structures. In particular, QCCP reveals its immense potential and superiority in tackling real-world challenges, specifically in the realm of quantum circuit cutting and reconstruction.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.