Structure and Properties of the Ribbon Produced from Fe-Co-Ni-Si-B Soft Magnetic Alloy by Spinning

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
A. P. Semin, V. E. Gromov, Yu. F. Ivanov, S. V. Panin, E. A. Kolubaev, I. Yu. Litovchenko, S. V. Borovskii
{"title":"Structure and Properties of the Ribbon Produced from Fe-Co-Ni-Si-B Soft Magnetic Alloy by Spinning","authors":"A. P. Semin,&nbsp;V. E. Gromov,&nbsp;Yu. F. Ivanov,&nbsp;S. V. Panin,&nbsp;E. A. Kolubaev,&nbsp;I. Yu. Litovchenko,&nbsp;S. V. Borovskii","doi":"10.1134/S1029959924601179","DOIUrl":null,"url":null,"abstract":"<p>A ribbon of soft-magnetic high-entropy alloy Fe-Co-Ni-Si-B with the nonequiatomic composition and the thickness of ~70 μm was produced by spinning. Its structure, mechanical, tribological and magnetic properties were analyzed by experimental methods of the modern materials science. It was found that the studied material is in an amorphous (X-ray amorphous) state. The microhardness of the ribbon was HV = 8 GPa. Transmission electron microscopy on electrolytically polished foils showed that the size of structural elements of the ribbon did not exceed 10 nm. Ion etching led to partial crystallization of the foil and growth of nanocrystallites to several tens of nanometers. The tensile strength of the ribbon was more than 590 MPa at a low elongation to failure (1%). The distribution patterns of the longitudinal and transverse strain components were constructed, according to which no strain macrolocalization occurred up to fracture. The wear rate in the longitudinal direction of the ribbon was more than 4 times higher than that in the transverse direction. The magnetic properties were characterized by a hysteresis loop, with the maximum value of the specific magnetic moment being ~120 emu/g.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"28 1","pages":"43 - 54"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924601179","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

A ribbon of soft-magnetic high-entropy alloy Fe-Co-Ni-Si-B with the nonequiatomic composition and the thickness of ~70 μm was produced by spinning. Its structure, mechanical, tribological and magnetic properties were analyzed by experimental methods of the modern materials science. It was found that the studied material is in an amorphous (X-ray amorphous) state. The microhardness of the ribbon was HV = 8 GPa. Transmission electron microscopy on electrolytically polished foils showed that the size of structural elements of the ribbon did not exceed 10 nm. Ion etching led to partial crystallization of the foil and growth of nanocrystallites to several tens of nanometers. The tensile strength of the ribbon was more than 590 MPa at a low elongation to failure (1%). The distribution patterns of the longitudinal and transverse strain components were constructed, according to which no strain macrolocalization occurred up to fracture. The wear rate in the longitudinal direction of the ribbon was more than 4 times higher than that in the transverse direction. The magnetic properties were characterized by a hysteresis loop, with the maximum value of the specific magnetic moment being ~120 emu/g.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信