Synthesis and Antimicrobial Evaluation of (E)-2-(4-((4-((1-(2,4-Dichlorophenyl)-3-methyl-5-oxo-1,5-dihydro-4H-pyrazol-4-ylidene)methyl)-2-methoxyphenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-phenylacetamide Derivatives
Cheryl T. Mascarenhas, Jaidip B. Wable, Hemantkumar N. Akolkar, Nirmala R. Darekar, Pradnya J. Prabhu
{"title":"Synthesis and Antimicrobial Evaluation of (E)-2-(4-((4-((1-(2,4-Dichlorophenyl)-3-methyl-5-oxo-1,5-dihydro-4H-pyrazol-4-ylidene)methyl)-2-methoxyphenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-phenylacetamide Derivatives","authors":"Cheryl T. Mascarenhas, Jaidip B. Wable, Hemantkumar N. Akolkar, Nirmala R. Darekar, Pradnya J. Prabhu","doi":"10.1134/S1068162025010091","DOIUrl":null,"url":null,"abstract":"<p><b>Objective:</b> There has never been a compilation of (<i>E</i>)-2-(4-((4-((1-(2,4-dichlorophenyl)-3-methyl-5-oxo-1<i>H</i>-pyrazol-4(5<i>H</i>)-ylidene)methyl)-2-methoxyphenoxy)methyl)-1<i>H</i>-1,2,3-triazol-1-yl)-<i>N</i>-phenylacetamide derivatives produced before. For the synthesis of (<b>VIIa–VIIh</b>), (<i>E</i>)-1-(2,4-dichlorophenyl)-4-(3-methoxy-4-(prop-2-yn-1-yloxy)benzylidene)-3-methyl-1<i>H</i>-pyrazol-5(4<i>H</i>)-one (<b>V</b>) was utilized. <b>Methods:</b> The compounds were synthesized using the Click chemistry process. We used the tube-dilution approach to test for antimicrobial and antifungal activity. <b>Results and Discussion:</b> Mass spectrometry, <sup>1</sup>H, <sup>13</sup>C NMR, and IR spectroscopy were used to validate the eight newly produced compounds. The antibacterial and antifungal properties of the new compounds were tested. While seven compounds ((<b>VIIa–VIIc</b>), (<b>VIIe–VIIh</b>)) demonstrated antimicrobial activity against a range of bacterial strains, including <i>Escherichia coli</i>, <i>Pseudomonas aeruginosa</i>, <i>Staphylococcus aureus</i>, and <i>Streptococcus pyogenes</i>, the activity was comparable to that of the drug ampicillin, whereas (<b>VIIh</b>) exhibited good antifungal activity compared to its standard drug Griseofulvin against <i>Candida albicans</i>. <b>Conclusions:</b> We conclude that the newly synthesized 1,2,3-triazoles showed good antibacterial activity and can be used as precursors for drug molecules in the future.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"51 1","pages":"151 - 159"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1068162025010091","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: There has never been a compilation of (E)-2-(4-((4-((1-(2,4-dichlorophenyl)-3-methyl-5-oxo-1H-pyrazol-4(5H)-ylidene)methyl)-2-methoxyphenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-phenylacetamide derivatives produced before. For the synthesis of (VIIa–VIIh), (E)-1-(2,4-dichlorophenyl)-4-(3-methoxy-4-(prop-2-yn-1-yloxy)benzylidene)-3-methyl-1H-pyrazol-5(4H)-one (V) was utilized. Methods: The compounds were synthesized using the Click chemistry process. We used the tube-dilution approach to test for antimicrobial and antifungal activity. Results and Discussion: Mass spectrometry, 1H, 13C NMR, and IR spectroscopy were used to validate the eight newly produced compounds. The antibacterial and antifungal properties of the new compounds were tested. While seven compounds ((VIIa–VIIc), (VIIe–VIIh)) demonstrated antimicrobial activity against a range of bacterial strains, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pyogenes, the activity was comparable to that of the drug ampicillin, whereas (VIIh) exhibited good antifungal activity compared to its standard drug Griseofulvin against Candida albicans. Conclusions: We conclude that the newly synthesized 1,2,3-triazoles showed good antibacterial activity and can be used as precursors for drug molecules in the future.
期刊介绍:
Russian Journal of Bioorganic Chemistry publishes reviews and original experimental and theoretical studies on the structure, function, structure–activity relationships, and synthesis of biopolymers, such as proteins, nucleic acids, polysaccharides, mixed biopolymers, and their complexes, and low-molecular-weight biologically active compounds (peptides, sugars, lipids, antibiotics, etc.). The journal also covers selected aspects of neuro- and immunochemistry, biotechnology, and ecology.