Predicting homopolymer and copolymer solubility through machine learning†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Christopher D. Stubbs, Yeonjoon Kim, Ethan C. Quinn, Raúl Pérez-Soto, Eugene Y.-X. Chen and Seonah Kim
{"title":"Predicting homopolymer and copolymer solubility through machine learning†","authors":"Christopher D. Stubbs, Yeonjoon Kim, Ethan C. Quinn, Raúl Pérez-Soto, Eugene Y.-X. Chen and Seonah Kim","doi":"10.1039/D4DD00290C","DOIUrl":null,"url":null,"abstract":"<p >Polymer solubility has applications in many important and diverse fields, including microprocessor fabrication, environmental conservation, paint formulation, and drug delivery, but it remains under-explored compared to its relative importance. This can be seen in the relative scarcity of solvent-based systems for recycling plastics, despite a need for efficient and selective methods amid the looming plastics and climate crises. Towards this need for better predictive tools, this work examines the use of classical and deep machine learning (ML) models for predicting categorical solubility in homopolymers and copolymers, with model architectures including random forest (RF), decision tree (DT), naive Bayes, AdaBoost, and graph neural networks (GNNs). We achieve high accuracy for both our homopolymer (82%, RF) and copolymer models (92%, RF) on unseen polymer–solvent systems in our 5-fold cross-validation studies. The relevance and applicability of our homopolymer models are then verified through in-house experiments examining the solubility of common commercial plastics, followed by an explainable AI (XAI) analysis using Shapley Additive Explanations (SHAP), which explores the relative contribution of each feature toward model predictions. We then apply our homopolymer solubility prediction model to remove unwanted or hazardous additives in polyethylene (PE) and polystyrene (PS) waste. This work demonstrates the validity/feasibility of using ML to predict homopolymer solubility, provides novel ML models for the prediction of copolymer solubility, and explains homopolymer model predictions before applying the explained model to a globally relevant waste challenge.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 2","pages":" 424-437"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00290c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00290c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer solubility has applications in many important and diverse fields, including microprocessor fabrication, environmental conservation, paint formulation, and drug delivery, but it remains under-explored compared to its relative importance. This can be seen in the relative scarcity of solvent-based systems for recycling plastics, despite a need for efficient and selective methods amid the looming plastics and climate crises. Towards this need for better predictive tools, this work examines the use of classical and deep machine learning (ML) models for predicting categorical solubility in homopolymers and copolymers, with model architectures including random forest (RF), decision tree (DT), naive Bayes, AdaBoost, and graph neural networks (GNNs). We achieve high accuracy for both our homopolymer (82%, RF) and copolymer models (92%, RF) on unseen polymer–solvent systems in our 5-fold cross-validation studies. The relevance and applicability of our homopolymer models are then verified through in-house experiments examining the solubility of common commercial plastics, followed by an explainable AI (XAI) analysis using Shapley Additive Explanations (SHAP), which explores the relative contribution of each feature toward model predictions. We then apply our homopolymer solubility prediction model to remove unwanted or hazardous additives in polyethylene (PE) and polystyrene (PS) waste. This work demonstrates the validity/feasibility of using ML to predict homopolymer solubility, provides novel ML models for the prediction of copolymer solubility, and explains homopolymer model predictions before applying the explained model to a globally relevant waste challenge.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信