Hybrid-LLM-GNN: integrating large language models and graph neural networks for enhanced materials property prediction†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Youjia Li, Vishu Gupta, Muhammed Nur Talha Kilic, Kamal Choudhary, Daniel Wines, Wei-keng Liao, Alok Choudhary and Ankit Agrawal
{"title":"Hybrid-LLM-GNN: integrating large language models and graph neural networks for enhanced materials property prediction†","authors":"Youjia Li, Vishu Gupta, Muhammed Nur Talha Kilic, Kamal Choudhary, Daniel Wines, Wei-keng Liao, Alok Choudhary and Ankit Agrawal","doi":"10.1039/D4DD00199K","DOIUrl":null,"url":null,"abstract":"<p >Graph-centric learning has attracted significant interest in materials informatics. Accordingly, a family of graph-based machine learning models, primarily utilizing Graph Neural Networks (GNN), has been developed to provide accurate prediction of material properties. In recent years, Large Language Models (LLM) have revolutionized existing scientific workflows that process text representations, thanks to their exceptional ability to utilize extensive common knowledge for understanding semantics. With the help of automated text representation tools, fine-tuned LLMs have demonstrated competitive prediction accuracy as standalone predictors. In this paper, we propose to integrate the insights from GNNs and LLMs to enhance both prediction accuracy and model interpretability. Inspired by the feature-extraction-based transfer learning study for the GNN model, we introduce a novel framework that extracts and combines GNN and LLM embeddings to predict material properties. In this study, we employed ALIGNN as the GNN model and utilized BERT and MatBERT as the LLM model. We evaluated the proposed framework in cross-property scenarios using 7 properties. We find that the combined feature extraction approach using GNN and LLM outperforms the GNN-only approach in the majority of the cases with up to 25% improvement in accuracy. We conducted model explanation analysis through text erasure to interpret the model predictions by examining the contribution of different parts of the text representation.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 2","pages":" 376-383"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00199k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00199k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graph-centric learning has attracted significant interest in materials informatics. Accordingly, a family of graph-based machine learning models, primarily utilizing Graph Neural Networks (GNN), has been developed to provide accurate prediction of material properties. In recent years, Large Language Models (LLM) have revolutionized existing scientific workflows that process text representations, thanks to their exceptional ability to utilize extensive common knowledge for understanding semantics. With the help of automated text representation tools, fine-tuned LLMs have demonstrated competitive prediction accuracy as standalone predictors. In this paper, we propose to integrate the insights from GNNs and LLMs to enhance both prediction accuracy and model interpretability. Inspired by the feature-extraction-based transfer learning study for the GNN model, we introduce a novel framework that extracts and combines GNN and LLM embeddings to predict material properties. In this study, we employed ALIGNN as the GNN model and utilized BERT and MatBERT as the LLM model. We evaluated the proposed framework in cross-property scenarios using 7 properties. We find that the combined feature extraction approach using GNN and LLM outperforms the GNN-only approach in the majority of the cases with up to 25% improvement in accuracy. We conducted model explanation analysis through text erasure to interpret the model predictions by examining the contribution of different parts of the text representation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信