A novel approach to protein chemical shift prediction from sequences using a protein language model†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
He Zhu, Lingyue Hu, Yu Yang and Zhong Chen
{"title":"A novel approach to protein chemical shift prediction from sequences using a protein language model†","authors":"He Zhu, Lingyue Hu, Yu Yang and Zhong Chen","doi":"10.1039/D4DD00367E","DOIUrl":null,"url":null,"abstract":"<p >Chemical shifts are crucial parameters in protein Nuclear Magnetic Resonance (NMR) experiments. Specifically, the chemical shifts of backbone atoms are essential for determining the constraints in protein structure analysis. Despite their importance, protein NMR experiments are costly and spectral analysis presents challenges due to sample impurities, complex experimental environments, and spectral overlap. Here, we propose a chemical shift prediction method that requires only protein sequences as input. This low-cost chemical shift predictor provides a chemical shift corresponding to each backbone atom, offers valuable prior information for peak assignment, and can significantly aid protein NMR spectrum analysis. Our approach leverages recent advances in pre-trained protein language models (PLMs) and employs a deep learning model to obtain chemical shifts. Different from other chemical shift prediction programs, our method does not require protein structures as input, significantly reducing costs and enhancing robustness. Our method can achieve comparable accuracy to other existing programs that require protein structures as input. In summary, this work introduces a novel method for protein chemical shift prediction and demonstrates the potential of PLMs for diverse applications.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 2","pages":" 331-337"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00367e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00367e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical shifts are crucial parameters in protein Nuclear Magnetic Resonance (NMR) experiments. Specifically, the chemical shifts of backbone atoms are essential for determining the constraints in protein structure analysis. Despite their importance, protein NMR experiments are costly and spectral analysis presents challenges due to sample impurities, complex experimental environments, and spectral overlap. Here, we propose a chemical shift prediction method that requires only protein sequences as input. This low-cost chemical shift predictor provides a chemical shift corresponding to each backbone atom, offers valuable prior information for peak assignment, and can significantly aid protein NMR spectrum analysis. Our approach leverages recent advances in pre-trained protein language models (PLMs) and employs a deep learning model to obtain chemical shifts. Different from other chemical shift prediction programs, our method does not require protein structures as input, significantly reducing costs and enhancing robustness. Our method can achieve comparable accuracy to other existing programs that require protein structures as input. In summary, this work introduces a novel method for protein chemical shift prediction and demonstrates the potential of PLMs for diverse applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信