Advancing predictive toxicology: overcoming hurdles and shaping the future

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sara Masarone, Katie V. Beckwith, Matthew R. Wilkinson, Shreshth Tuli, Amy Lane, Sam Windsor, Jordan Lane and Layla Hosseini-Gerami
{"title":"Advancing predictive toxicology: overcoming hurdles and shaping the future","authors":"Sara Masarone, Katie V. Beckwith, Matthew R. Wilkinson, Shreshth Tuli, Amy Lane, Sam Windsor, Jordan Lane and Layla Hosseini-Gerami","doi":"10.1039/D4DD00257A","DOIUrl":null,"url":null,"abstract":"<p >Modern drug discovery projects are plagued with high failure rates, many of which have safety as the underlying cause. The drug discovery process involves selecting the right compounds from a pool of possible candidates to satisfy some pre-set requirements. As this process is costly and time consuming, finding toxicities at later stages can result in project failure. In this context, the use of existing data from previous projects can help develop computational models (<em>e.g.</em> QSARs) and algorithms to speed up the identification of compound toxicity. While clinical and <em>in vivo</em> data continues to be fundamental, data originating from organ-on-a-chip models, cell lines and previous studies can accelerate the drug discovery process allowing for faster identification of toxicities and thus saving time and resources.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 2","pages":" 303-315"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00257a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00257a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modern drug discovery projects are plagued with high failure rates, many of which have safety as the underlying cause. The drug discovery process involves selecting the right compounds from a pool of possible candidates to satisfy some pre-set requirements. As this process is costly and time consuming, finding toxicities at later stages can result in project failure. In this context, the use of existing data from previous projects can help develop computational models (e.g. QSARs) and algorithms to speed up the identification of compound toxicity. While clinical and in vivo data continues to be fundamental, data originating from organ-on-a-chip models, cell lines and previous studies can accelerate the drug discovery process allowing for faster identification of toxicities and thus saving time and resources.

Abstract Image

推进预测毒理学:克服障碍,塑造未来
现代药物研发项目的失败率很高,其中许多项目的根本原因是安全性。药物发现过程包括从一堆可能的候选化合物中选择合适的化合物,以满足一些预先设定的要求。由于这个过程是昂贵和耗时的,在后期发现毒性可能导致项目失败。在这种情况下,使用以前项目的现有数据可以帮助开发计算模型(例如qsar)和算法,以加快化合物毒性的识别。虽然临床和体内数据仍然是基础,但来自器官芯片模型、细胞系和先前研究的数据可以加速药物发现过程,从而更快地识别毒性,从而节省时间和资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信