Lithium-Ion Battery State-of-Charge and State-of-Energy Simultaneous Estimation via Sparse- Quasi Recurrent Neural Networks(S-QRNN)

IF 4.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Sakshi Sharma;Bijaya Ketan Panigrahi
{"title":"Lithium-Ion Battery State-of-Charge and State-of-Energy Simultaneous Estimation via Sparse- Quasi Recurrent Neural Networks(S-QRNN)","authors":"Sakshi Sharma;Bijaya Ketan Panigrahi","doi":"10.1109/TIA.2024.3522506","DOIUrl":null,"url":null,"abstract":"This paper presents an innovative methodology for the concurrent estimation of Lithium-Ion Battery (LiB) State-of-Charge (SoC) and State-of-Energy (SoE) employing Sparse Quasi-Recurrent Neural Networks (S-QRNN). The proposed framework is designed to leverage sparse connectivity patterns to efficiently capture intricate long-term dependencies within battery dynamics. Unlike traditional recurrent neural networks and Convolutional Networks, S-QRNN allows for more effective handling of sequential data, making them well-suited for predicting battery behavior, which exhibits complex temporal dynamics. Furthermore, the sparse connectivity structure reduces computational complexity and enhances the interpretability of the model. To validate the effectiveness and accuracy, adequate experimentation was conducted using laboratory-produced battery data. Moreover, the accuracy and computational efficacy of the proposed scheme have been verified in an OPAL-RT-based Real-Time Power Hardware-In-Loop (HIL) environment. The Opal RT platform provides a reliable and flexible environment integrated with MATLAB/Simulink for hardware-in-loop simulation. Experimental results demonstrate that the proposed method achieves robust and accurate estimation of both SoC and SoE, even in dynamic operational conditions of temperatures and battery load profiles.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"61 1","pages":"774-783"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10816102/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an innovative methodology for the concurrent estimation of Lithium-Ion Battery (LiB) State-of-Charge (SoC) and State-of-Energy (SoE) employing Sparse Quasi-Recurrent Neural Networks (S-QRNN). The proposed framework is designed to leverage sparse connectivity patterns to efficiently capture intricate long-term dependencies within battery dynamics. Unlike traditional recurrent neural networks and Convolutional Networks, S-QRNN allows for more effective handling of sequential data, making them well-suited for predicting battery behavior, which exhibits complex temporal dynamics. Furthermore, the sparse connectivity structure reduces computational complexity and enhances the interpretability of the model. To validate the effectiveness and accuracy, adequate experimentation was conducted using laboratory-produced battery data. Moreover, the accuracy and computational efficacy of the proposed scheme have been verified in an OPAL-RT-based Real-Time Power Hardware-In-Loop (HIL) environment. The Opal RT platform provides a reliable and flexible environment integrated with MATLAB/Simulink for hardware-in-loop simulation. Experimental results demonstrate that the proposed method achieves robust and accurate estimation of both SoC and SoE, even in dynamic operational conditions of temperatures and battery load profiles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Industry Applications
IEEE Transactions on Industry Applications 工程技术-工程:电子与电气
CiteScore
9.90
自引率
9.10%
发文量
747
审稿时长
3.3 months
期刊介绍: The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信