Neurotoxic implications of gliotoxin and ochratoxin A in SH-SY5Y cells: ROS-induced apoptosis and genotoxicity

IF 2.9 3区 医学 Q2 TOXICOLOGY
Raquel Penalva-Olcina, Cristina Juan, Mónica Fernández-Franzón, Ana Juan-García
{"title":"Neurotoxic implications of gliotoxin and ochratoxin A in SH-SY5Y cells: ROS-induced apoptosis and genotoxicity","authors":"Raquel Penalva-Olcina,&nbsp;Cristina Juan,&nbsp;Mónica Fernández-Franzón,&nbsp;Ana Juan-García","doi":"10.1016/j.toxlet.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Gliotoxin (GTX) and ochratoxin A (OTA) are naturally produced toxins by fungi and are known for their potential health risks. With the aim of shed some light on the mechanisms by which GTX, OTA, and their combination exert toxicity at neuronal level, the following <em>in vitro</em> studies were conducted in SH-SY5Y cells: a) intracellular ROS monitorization by the H2-DCFDA assay b) study of the expression of pro-apoptotic genes <em>Bcl2, Casp-3</em>, and <em>Bax</em> by RT-qPCR c) study of the apoptotic-necrotic progression of SH-SY5Y cells by flow cytometry; d) study of the genotoxic potential through the <em>in vitro</em> micronucleus (MN) assay also by flow cytometry following OECD TG 487 guidelines. ROS production was increased when cells were exposed to mycotoxins at all scenarios tested highlighting the effects of GTX. Regarding gene expression, increases of <em>Bax</em> and <em>Casp-3</em> genes at 1.3- and 3- folds respectively were observed when cells were exposed to GTX at 0.75 μM, with a more prominent increase after exposure to the binary combination [GTX + OTA] at [0.2 + 0.1] µM, increasing 3 and 5-folds more, respectively when compared to the control. MN formation increased a 30 % compared to control when exposed to GTX at 0.4 μM, 43 % for OTA at 0.8 μM, with the highest increase observed when cells were exposed to the combination [GTX + OTA] at [0.2 + 1.5] μM, obtaining a 65 % more MN formation. Based on the results obtained, we can conclude that for the proposed scenarios of exposure to GTX, OTA, and their combination, genotoxic effects together with oxidative effects at neuronal level in SH-SY5Y cell line, were found to play a key role in their mechanisms of toxic action.</div></div>","PeriodicalId":23206,"journal":{"name":"Toxicology letters","volume":"405 ","pages":"Pages 51-58"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037842742500027X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gliotoxin (GTX) and ochratoxin A (OTA) are naturally produced toxins by fungi and are known for their potential health risks. With the aim of shed some light on the mechanisms by which GTX, OTA, and their combination exert toxicity at neuronal level, the following in vitro studies were conducted in SH-SY5Y cells: a) intracellular ROS monitorization by the H2-DCFDA assay b) study of the expression of pro-apoptotic genes Bcl2, Casp-3, and Bax by RT-qPCR c) study of the apoptotic-necrotic progression of SH-SY5Y cells by flow cytometry; d) study of the genotoxic potential through the in vitro micronucleus (MN) assay also by flow cytometry following OECD TG 487 guidelines. ROS production was increased when cells were exposed to mycotoxins at all scenarios tested highlighting the effects of GTX. Regarding gene expression, increases of Bax and Casp-3 genes at 1.3- and 3- folds respectively were observed when cells were exposed to GTX at 0.75 μM, with a more prominent increase after exposure to the binary combination [GTX + OTA] at [0.2 + 0.1] µM, increasing 3 and 5-folds more, respectively when compared to the control. MN formation increased a 30 % compared to control when exposed to GTX at 0.4 μM, 43 % for OTA at 0.8 μM, with the highest increase observed when cells were exposed to the combination [GTX + OTA] at [0.2 + 1.5] μM, obtaining a 65 % more MN formation. Based on the results obtained, we can conclude that for the proposed scenarios of exposure to GTX, OTA, and their combination, genotoxic effects together with oxidative effects at neuronal level in SH-SY5Y cell line, were found to play a key role in their mechanisms of toxic action.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicology letters
Toxicology letters 医学-毒理学
CiteScore
7.10
自引率
2.90%
发文量
897
审稿时长
33 days
期刊介绍: An international journal for the rapid publication of novel reports on a range of aspects of toxicology, especially mechanisms of toxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信