Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures

IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Yuanpeng Ye , Longfei Yao , Guofeng Liu
{"title":"Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures","authors":"Yuanpeng Ye ,&nbsp;Longfei Yao ,&nbsp;Guofeng Liu","doi":"10.1016/j.cjsc.2024.100460","DOIUrl":null,"url":null,"abstract":"<div><div>Symmetry breaking, a critical phenomenon in both natural and artificial systems, is pivotal in constructing chiral structures from achiral building units. This study focuses on the achiral molecule 8,8',8'',8'''-((pyrazine-2,3,5,6-tetrayltetrakis(benzene-4,1-iyl))tetrakis (oxy))tetrakis (octan-1-ol) (TPP-C8OH), an aggregation-induced emission (AIE) molecule, to explore its symmetry breaking behavior in supramolecular assembly. By analyzing TPP-C8OH in various solvents—both non-chiral and chiral—we find that chiral solvents significantly enhance the molecule's symmetry breaking and chiroptical properties. Specially, alcohol solvents, particularly dodecyl alcohol, facilitate the formation of helical structures with both left-handed (<em>M</em>) and right-handed (<em>P</em>) helices within single twisted nanoribbons. This observation contrasts with previously reported symmetry breaking phenomena in assembly systems. Chiral solvents induce assemblies with distinct helical orientations, resulting in notable circularly polarized luminescence (CPL) and circular dichroism (CD) signals. This study elucidates the impact of solvent choice on symmetry breaking and chiral assembly, offering insights into the design of advanced chiral materials with tailored self-assembly processes.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"44 2","pages":"Article 100460"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124003428","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Symmetry breaking, a critical phenomenon in both natural and artificial systems, is pivotal in constructing chiral structures from achiral building units. This study focuses on the achiral molecule 8,8',8'',8'''-((pyrazine-2,3,5,6-tetrayltetrakis(benzene-4,1-iyl))tetrakis (oxy))tetrakis (octan-1-ol) (TPP-C8OH), an aggregation-induced emission (AIE) molecule, to explore its symmetry breaking behavior in supramolecular assembly. By analyzing TPP-C8OH in various solvents—both non-chiral and chiral—we find that chiral solvents significantly enhance the molecule's symmetry breaking and chiroptical properties. Specially, alcohol solvents, particularly dodecyl alcohol, facilitate the formation of helical structures with both left-handed (M) and right-handed (P) helices within single twisted nanoribbons. This observation contrasts with previously reported symmetry breaking phenomena in assembly systems. Chiral solvents induce assemblies with distinct helical orientations, resulting in notable circularly polarized luminescence (CPL) and circular dichroism (CD) signals. This study elucidates the impact of solvent choice on symmetry breaking and chiral assembly, offering insights into the design of advanced chiral materials with tailored self-assembly processes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
结构化学
结构化学 化学-晶体学
CiteScore
4.70
自引率
22.70%
发文量
5334
审稿时长
13 days
期刊介绍: Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信