Alessandro Aiello , Carlo De Michele , Gennaro Coppola
{"title":"Entropy conservative discretization of compressible Euler equations with an arbitrary equation of state","authors":"Alessandro Aiello , Carlo De Michele , Gennaro Coppola","doi":"10.1016/j.jcp.2025.113836","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a novel spatial discretization procedure for the compressible Euler equations which guarantees entropy conservation at a discrete level when an arbitrary equation of state is assumed. The proposed method, based on a locally-conservative discretization, guarantees also the spatial conservation of mass, momentum, and total energy and is kinetic-energy-preserving. In order to achieve the entropy-conservation property for an arbitrary non-ideal gas, a general strategy is adopted based on the manipulation of discrete balance equations through the imposition of global entropy conservation and the use of a summation-by-parts rule. The procedure, which is extended to an arbitrary order of accuracy, conducts to a general form of the internal-energy numerical flux which results in a nonlinear function of thermodynamic and dynamic variables and still admits the mass flux as a residual degree of freedom. The effectiveness of the novel entropy-conservative formulation is demonstrated through numerical tests making use of some of the most popular cubic equations of state.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"528 ","pages":"Article 113836"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125001196","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a novel spatial discretization procedure for the compressible Euler equations which guarantees entropy conservation at a discrete level when an arbitrary equation of state is assumed. The proposed method, based on a locally-conservative discretization, guarantees also the spatial conservation of mass, momentum, and total energy and is kinetic-energy-preserving. In order to achieve the entropy-conservation property for an arbitrary non-ideal gas, a general strategy is adopted based on the manipulation of discrete balance equations through the imposition of global entropy conservation and the use of a summation-by-parts rule. The procedure, which is extended to an arbitrary order of accuracy, conducts to a general form of the internal-energy numerical flux which results in a nonlinear function of thermodynamic and dynamic variables and still admits the mass flux as a residual degree of freedom. The effectiveness of the novel entropy-conservative formulation is demonstrated through numerical tests making use of some of the most popular cubic equations of state.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.