Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering

IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Jianjun Fang , Kunchen Xie , Yongli Song , Kangyi Zhang , Fei Xu , Xiaoze Shi , Ming Ren , Minzhi Zhan , Hai Lin , Luyi Yang , Shunning Li , Feng Pan
{"title":"Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering","authors":"Jianjun Fang ,&nbsp;Kunchen Xie ,&nbsp;Yongli Song ,&nbsp;Kangyi Zhang ,&nbsp;Fei Xu ,&nbsp;Xiaoze Shi ,&nbsp;Ming Ren ,&nbsp;Minzhi Zhan ,&nbsp;Hai Lin ,&nbsp;Luyi Yang ,&nbsp;Shunning Li ,&nbsp;Feng Pan","doi":"10.1016/j.cjsc.2024.100504","DOIUrl":null,"url":null,"abstract":"<div><div>The zero-strain spinel Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> stands out as a promising anode material for lithium-ion batteries due to its outstanding cycling stability. However, the limited theoretic specific capacity, low Li<sup>+</sup> diffusion coefficient and electronic conductivity severely hinder its practical application. In this study, we demonstrate a strategy of introducing abundant oxygen vacancies not only on the surface and but also inside the bulk of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> particles via reductive thermal sintering. The oxygen vacancies can significantly enhance the electronic conductivity and lithium-ion diffusion coefficient of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>, leading to a remarkable improvement in rate performance and a reduction in polarization. Moreover, additional lithium-ion accommodation sites can be created at the defective surface, contributing to a high specific capacity of over 200 mAh g<sup>−1</sup>.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"44 2","pages":"Article 100504"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124003866","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The zero-strain spinel Li4Ti5O12 stands out as a promising anode material for lithium-ion batteries due to its outstanding cycling stability. However, the limited theoretic specific capacity, low Li+ diffusion coefficient and electronic conductivity severely hinder its practical application. In this study, we demonstrate a strategy of introducing abundant oxygen vacancies not only on the surface and but also inside the bulk of Li4Ti5O12 particles via reductive thermal sintering. The oxygen vacancies can significantly enhance the electronic conductivity and lithium-ion diffusion coefficient of Li4Ti5O12, leading to a remarkable improvement in rate performance and a reduction in polarization. Moreover, additional lithium-ion accommodation sites can be created at the defective surface, contributing to a high specific capacity of over 200 mAh g−1.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
结构化学
结构化学 化学-晶体学
CiteScore
4.70
自引率
22.70%
发文量
5334
审稿时长
13 days
期刊介绍: Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信