Exploring consumer intentions to continue: Integrating task technology fit and social technology fit in generative AI based shopping platforms

IF 11.1 1区 管理学 Q1 ENGINEERING, INDUSTRIAL
Debarun Chakraborty , Ciro Troise , Stefano Bresciani
{"title":"Exploring consumer intentions to continue: Integrating task technology fit and social technology fit in generative AI based shopping platforms","authors":"Debarun Chakraborty ,&nbsp;Ciro Troise ,&nbsp;Stefano Bresciani","doi":"10.1016/j.technovation.2025.103189","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the significance of task-technology fit (TTF) and social-technology fit (STF) in generative AI-based shopping platforms. Examination of this integration can assume importance for generative AI-based shopping platforms that can drive consumer intentions to continue using, ensuring long-term engagement and platform success. The study evaluates how these alignments influence users' satisfaction, perceived usefulness, and intention to continue using the platform. A mixed methodology approach was used in the study, and exploratory and confirmatory analyses were conducted. In the exploratory study, 27 respondents provided their responses; in study 2, which is confirmatory, 472 participants answered the questions. Generative AI can handle complex tasks and accommodate various user needs to enhance the platform's efficiency and overall user experience. In addition, the study focuses on social factors such as trust and community engagement, which influence user satisfaction and the effectiveness of the platform being used. Gender differences are also considered in the study by examining how these affect users' interactions with AI features. Gender differences significantly influence satisfaction and continued use of generative AI-based shopping platforms, highlighting the need for personalized and diverse AI features to cater to varied user preferences. These results provide detailed suggestions and worthwhile practices for developing AI-based shopping platforms that would appeal to their users in the long run and satisfy their emerging needs and preferences. Practical implications show the importance of deploying AI tasks that fit most business needs in order to promote scalability, community needs, personalization based on the gender of the user, and ethical considerations in order to promote the proper use of AI in business. These findings offer practical guidance for enhancing user engagement through tailored AI features.</div></div>","PeriodicalId":49444,"journal":{"name":"Technovation","volume":"142 ","pages":"Article 103189"},"PeriodicalIF":11.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technovation","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166497225000215","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the significance of task-technology fit (TTF) and social-technology fit (STF) in generative AI-based shopping platforms. Examination of this integration can assume importance for generative AI-based shopping platforms that can drive consumer intentions to continue using, ensuring long-term engagement and platform success. The study evaluates how these alignments influence users' satisfaction, perceived usefulness, and intention to continue using the platform. A mixed methodology approach was used in the study, and exploratory and confirmatory analyses were conducted. In the exploratory study, 27 respondents provided their responses; in study 2, which is confirmatory, 472 participants answered the questions. Generative AI can handle complex tasks and accommodate various user needs to enhance the platform's efficiency and overall user experience. In addition, the study focuses on social factors such as trust and community engagement, which influence user satisfaction and the effectiveness of the platform being used. Gender differences are also considered in the study by examining how these affect users' interactions with AI features. Gender differences significantly influence satisfaction and continued use of generative AI-based shopping platforms, highlighting the need for personalized and diverse AI features to cater to varied user preferences. These results provide detailed suggestions and worthwhile practices for developing AI-based shopping platforms that would appeal to their users in the long run and satisfy their emerging needs and preferences. Practical implications show the importance of deploying AI tasks that fit most business needs in order to promote scalability, community needs, personalization based on the gender of the user, and ethical considerations in order to promote the proper use of AI in business. These findings offer practical guidance for enhancing user engagement through tailored AI features.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Technovation
Technovation 管理科学-工程:工业
CiteScore
15.10
自引率
11.20%
发文量
208
审稿时长
91 days
期刊介绍: The interdisciplinary journal Technovation covers various aspects of technological innovation, exploring processes, products, and social impacts. It examines innovation in both process and product realms, including social innovations like regulatory frameworks and non-economic benefits. Topics range from emerging trends and capital for development to managing technology-intensive ventures and innovation in organizations of different sizes. It also discusses organizational structures, investment strategies for science and technology enterprises, and the roles of technological innovators. Additionally, it addresses technology transfer between developing countries and innovation across enterprise, political, and economic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信