Application of global rational approximants method to solve nonlinear differential equations: Riccati equations, Logistic growth model and drug consumption model

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yassine Chakir
{"title":"Application of global rational approximants method to solve nonlinear differential equations: Riccati equations, Logistic growth model and drug consumption model","authors":"Yassine Chakir","doi":"10.1016/j.chaos.2025.116089","DOIUrl":null,"url":null,"abstract":"<div><div>Obtaining an analytical representation of the solutions of nonlinear differential equations has been a challenge for many years. This difficulty is particularly pronounced when these equations model a physical phenomenon, which makes the exact solution even more difficult to find. In this paper, we present a global semi-analytical approach for deriving global rational approximants to Riccati equations and logistic growth models, which are commonly employed in the modeling of complex systems. We also show that our approach can be efficiently used to solve a system of nonlinear equations that represent a dynamical system without closed solution, namely the drug consumption model. This current global semi-analytical method consists firstly in generating the solutions of these nonlinear differential equations in terms of series expansions for small and large values. Then, two-point Padé approximants are applied to provide global approximate representation solutions that agree with the exact solution over the whole period of time. To demonstrate the effectiveness of our study, some examples given in the literature have been solved using our approach. Numerical comparisons between the present approach and other methods are also included.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"193 ","pages":"Article 116089"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792500102X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Obtaining an analytical representation of the solutions of nonlinear differential equations has been a challenge for many years. This difficulty is particularly pronounced when these equations model a physical phenomenon, which makes the exact solution even more difficult to find. In this paper, we present a global semi-analytical approach for deriving global rational approximants to Riccati equations and logistic growth models, which are commonly employed in the modeling of complex systems. We also show that our approach can be efficiently used to solve a system of nonlinear equations that represent a dynamical system without closed solution, namely the drug consumption model. This current global semi-analytical method consists firstly in generating the solutions of these nonlinear differential equations in terms of series expansions for small and large values. Then, two-point Padé approximants are applied to provide global approximate representation solutions that agree with the exact solution over the whole period of time. To demonstrate the effectiveness of our study, some examples given in the literature have been solved using our approach. Numerical comparisons between the present approach and other methods are also included.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信