Multi-agent deep reinforcement learning-based joint channel selection and power control method

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Weiwei Bai , Guoqiang Zheng , Weibing Xia , Yu Mu , Yujun Xue
{"title":"Multi-agent deep reinforcement learning-based joint channel selection and power control method","authors":"Weiwei Bai ,&nbsp;Guoqiang Zheng ,&nbsp;Weibing Xia ,&nbsp;Yu Mu ,&nbsp;Yujun Xue","doi":"10.1016/j.compeleceng.2025.110147","DOIUrl":null,"url":null,"abstract":"<div><div>Aiming at the problem of system performance degradation caused by dynamic spectrum access in underlay mode within cognitive radio networks, we propose a multi-agent deep reinforcement learning-based joint channel selection and power control (MA-JCSPC) method. This method formulates the spectrum access problem in underlay mode as an optimization problem of joint channel selection and power control, and transforms this optimization problem into a multi-agent Markov decision process. By designing a multi-agent deep reinforcement learning framework with centralized training and decentralized execution, the channel selection and power control strategies for secondary users are optimized. In this process, a nonlinear reward function is designed by introducing a penalty term, and a novel initial action selection strategy based on a action guidance term is employed to solve the sparse rewards and ineffective exploration problems. The simulation results demonstrate that the MA-JCSPC method surpasses the compared methods in convergence, resource allocation rationality, and throughput. Compared to the centralized deep reinforcement learning (C-DRL) method, the proposed method achieves an average improvement of 6.7% and 9.1% in the sum throughput of secondary users, respectively, under variations in the throughput requirements of the primary user and the number of secondary users.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"123 ","pages":"Article 110147"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625000904","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem of system performance degradation caused by dynamic spectrum access in underlay mode within cognitive radio networks, we propose a multi-agent deep reinforcement learning-based joint channel selection and power control (MA-JCSPC) method. This method formulates the spectrum access problem in underlay mode as an optimization problem of joint channel selection and power control, and transforms this optimization problem into a multi-agent Markov decision process. By designing a multi-agent deep reinforcement learning framework with centralized training and decentralized execution, the channel selection and power control strategies for secondary users are optimized. In this process, a nonlinear reward function is designed by introducing a penalty term, and a novel initial action selection strategy based on a action guidance term is employed to solve the sparse rewards and ineffective exploration problems. The simulation results demonstrate that the MA-JCSPC method surpasses the compared methods in convergence, resource allocation rationality, and throughput. Compared to the centralized deep reinforcement learning (C-DRL) method, the proposed method achieves an average improvement of 6.7% and 9.1% in the sum throughput of secondary users, respectively, under variations in the throughput requirements of the primary user and the number of secondary users.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信