{"title":"Symmetry and functional inequalities for stable Lévy-type operators","authors":"Lu-Jing Huang , Tao Wang","doi":"10.1016/j.spa.2025.104600","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish the sufficient and necessary conditions for the symmetry of the following stable Lévy-type operator <span><math><mi>L</mi></math></span> on <span><math><mi>R</mi></math></span>: <span><span><span><math><mrow><mi>L</mi><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>b</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>a</mi></math></span> is a continuous and strictly positive function, and <span><math><mi>b</mi></math></span> is a differentiable function. We then study the criteria for functional inequalities, such as logarithmic Sobolev inequalities, Nash inequalities and super-Poincaré inequalities under the assumption of symmetry. Our approach involves the Orlicz space theory and the estimates of the Green functions.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"183 ","pages":"Article 104600"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000419","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we establish the sufficient and necessary conditions for the symmetry of the following stable Lévy-type operator on : where is a continuous and strictly positive function, and is a differentiable function. We then study the criteria for functional inequalities, such as logarithmic Sobolev inequalities, Nash inequalities and super-Poincaré inequalities under the assumption of symmetry. Our approach involves the Orlicz space theory and the estimates of the Green functions.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.